Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 018901    DOI: 10.1088/1674-1056/20/1/018901
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Multi-target pursuit formation of multi-agent systems

Yan Jing(闫敬)a),Guan Xin-Ping(关新平)a)b),and Luo Xiao-Yuan(罗小元)a)
a Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; b School of Electronic and Electric Engineering, Shanghai Jiaotong University, Shanghai 200240, China
Abstract  The main goal of this paper is to design a team of agents that can accomplish multi-target pursuit formation using a developed leader–follower strategy. It is supposed that every target can accept a certain number of agents. First, each agent can automatically choose its target based on the distance from the agent to the target and the number of agents accepted by the target. In view of the fact that all agents are randomly dispersed in the workplace at the initial time, we present a numbering strategy for them. During the movement of agents, not every agent can always obtain pertinent state information about the targets. So, a developed leader–follower strategy and a pursuit formation algorithm are proposed. Under the proposed method, agents with the same target can maintain a circle formation. Furthermore, it turns out that the pursuit formation algorithm for agents to the desired formation is convergent. Simulation studies are provided to illustrate the effectiveness of the proposed method.
Keywords:  multi-agent systems      pursuit      formation      leader–follower  
Received:  24 June 2010      Revised:  10 August 2010      Accepted manuscript online: 
PACS:  89.20.Ff (Computer science and technology)  
  87.85.St (Robotics)  
  89.65.Ef (Social organizations; anthropology ?)  
  02.30.Em (Potential theory)  
Fund: Project partially supported by the National Basic Research Program of China (Grant No. 2010CB731800), the Key Project of Natural Science Foundation of China (Grant No. 60934003), the National Natural Science Foundation of China (Grant No. 61074065) and Key Project for Natural Science Research of Hebei Education Department, China (Grant No. ZD200908).

Cite this article: 

Yan Jing(闫敬), Guan Xin-Ping(关新平), and Luo Xiao-Yuan(罗小元) Multi-target pursuit formation of multi-agent systems 2011 Chin. Phys. B 20 018901

[1] Yuan H L and Qu Z H 2009 IET Control Theory A 3 712 bibitem
[2] Oliveira L B and Camponogara E 2010 Transport. Res. C-Emer. 18 120 bibitem
[3] Olfati-Saber R 2006 IEEE Trans. Automat. Control. 51 401 bibitem
[4] Kolling A and Carpin S 2010 IEEE Trans. Robot. bf 26 32 bibitem
[5] Xiao F, Wang L, Chen J and Gao Y P 2009 Automatica 45 2605 bibitem
[6] Couzin I D, Krause J, Franks N R and Levin S A 2005 it Nature 433 513 bibitem
[7] Gu D B and Wang Z Y 2009 IEEE Trans. Control Syst. Tech. 17 1211 bibitem
[8] Lewis M A and Tan K H 1997 Auton. Robot. 4 387 bibitem
[9] Balch T and Arkin R C 1999 IEEE Trans. Robot. Autom. 14 1999 bibitem
[10] He Y, Zhang F M, Yang Y F and Li C F 2010 Chin. Phys. B 19 060501R bibitem
[11] Qu Z H, Wang J and Hull R A 2008 IEEE Trans. Autom. Control 53 894 bibitem
[12] Luo X Y, Li S B and Guan X P 2009 Chin. Phys. B 18 3104 bibitem
[13] Ding W, Yan G F and Lin Z Y 2010 Automatica % 46 174 bibitem
[14] Keviczky T, Borrelli F and Fregene K 2008 IEEE Trans. Intell. Transp. Syst. 16 19 bibitem
[15] Semsar-Kazerooni E and Khorasani K 2009 Automatica 45 2205 bibitem
[16] Marshall J A, Broucke M E and Francis B A 2006 % Automatica 42 3 bibitem
[17] Kim T H and Sugie T 2007 Automatica 43 1426 bibitem
[18] Marshall J A 2005 Coordinated Autonomy: Pursuit Formations of Multivehicle Systems Ph. D. Thesis (Toronto: University of Toronto of Canada) bibitem
[19] Pavone M, Smith S L, Bullo F and Frazzoli E 2009 it Proceedings of American Control Confer. St Louis, USA, June 10-12, 2009 p604 bibitem
[20] Cassandras C G, Dai L Y and Panayiotou C G 1998 IEEE Trans. Autom. Control 43 881 bibitem
[21] Choi J, Oh S and Horowitz R 2009 Automatica bf 45 2802 bibitem
[22] Luo X Y, Li S B and Guan X P 2010 Pattern Recogn. Lett. 31 800 bibitem
[23] Tan F X, Guan X P and Liu D R 2008 Chin. Phys. B 17 3531 bibitem
[24] Khatib O 1986 J. Robot. Res. 5 90 bibitem
[25] Li H, Lin P and Zhang C X 2008 Chin. Phys. B bf 17 4458 bibitem
[26] Huang L 2009 Robotic. Auton. Syst. 57 55 bibitem
[27] Huang H and Fajen B R 2006 Robot. Auton. Syst. 54 288
[1] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[4] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[5] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[6] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[7] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[8] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[9] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[10] Amorphous transformation of ternary Cu45Zr45Ag10 alloy under microgravity condition
Ming-Hua Su(苏明华), Fu-Ping Dai(代富平), and Ying Ruan(阮莹). Chin. Phys. B, 2022, 31(9): 098106.
[11] Bioinspired tactile perception platform with information encryption function
Zhi-Wen Shi(石智文), Zheng-Yu Ren(任征宇), Wei-Sheng Wang(王伟胜), Hui Xiao(肖惠), Yu-Heng Zeng(曾俞衡), and Li-Qiang Zhu(竺立强). Chin. Phys. B, 2022, 31(9): 098506.
[12] A modified heuristics-based model for simulating realistic pedestrian movement behavior
Wei-Li Wang(王维莉), Hai-Cheng Li(李海城), Jia-Yu Rong(戎加宇), Qin-Qin Fan(范勤勤), Xin Han(韩新), and Bei-Hua Cong(丛北华). Chin. Phys. B, 2022, 31(9): 094501.
[13] Design method of reusable reciprocal invisibility and phantom device
Cheng-Fu Yang(杨成福), Li-Jun Yun(云利军), and Jun-Wei Li(李俊玮). Chin. Phys. B, 2022, 31(8): 084101.
[14] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[15] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
No Suggested Reading articles found!