Abstract Recently, much research has indicated that more and more cancers pose a threat to human life. Cancers are caused by oncogenes. Many human oncogenes have been found and most of them are located on chromosomes. The discovery of the oncogene plays a significant role in the treatment of cancer. The p53 tumor suppressor gene has received much attention because it frequently mutates or deletes in tumor cells of most people. Thus, the study of oncogenes is significant. In order to establish the Galois field (GF(7)), the indefinite gene is introduced as D and oncogene is introduced as O, and P. Taking the polynomial coefficients a0, a1, a2 ∈ GF(7) and the bijective function f:GF(7) → {D,A,C,O,G,T,P}, where f(0) = D, f(1) = A, f(2) = C, f(3) = O, f(4) = G, f(5) = T, and f(6) = P, the bijective φ may be written as φ(a0 + a1x + a2x2). Based on the algebraic structure, we can not only analyse the DNA sequence of oncogenes, but also predict possible new cancers.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.