Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 010301    DOI: 10.1088/1674-1056/20/1/010301
GENERAL Prev   Next  

A generalized Hadamard transformation from new entangled state

Xu Xing-Lei(徐兴磊)a)b)†, Xu Shi-Min(徐世民) a)b), Zhang Yun-Hai(张运海)a)b), Li Hong-Qi(李洪奇)a)b), and Wang Ji-Suo(王继锁) c)
a Department of Physics, Heze University, Heze 274015, Chinab Key Laboratory of Quantum Communication and Calculation, Heze University, Heze 274015, China; c Department of Physics, Liaocheng University, Liaocheng 252059, China
Abstract  A new entangled state $| {\eta ;\theta } \rangle $ is proposed by the technique of integral within an ordered product. A generalized Hadamard transformation is derived by virtue of $| {\eta ;\theta } \rangle $, which  plays a role of Hadamard transformation for $(\hat {a}_1 \sin \theta - \hat {a}_2 \cos \theta )$ and $(\hat {a}_1 \cos \theta + \hat {a}_2 \sin \theta )$.
Keywords:  generalized Hadamard transformation      entangled state      technique of integral within an ordered product  
Received:  11 July 2010      Revised:  16 August 2010      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  42.50Dv  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10574060) the Natural Science Foundation of Shandong Province of China (Grant No. Y2008A16), the University Experimental Technology Foundation of Shandong Province, China (Grant No. S04W138), and the Natural Science Foundation of Heze University of Shandong Province, China (Grant Nos. XY07WL01 and XY08WL03).

Cite this article: 

Xu Xing-Lei(徐兴磊), Xu Shi-Min(徐世民), Zhang Yun-Hai(张运海), Li Hong-Qi(李洪奇), and Wang Ji-Suo(王继锁) A generalized Hadamard transformation from new entangled state 2011 Chin. Phys. B 20 010301

[1] Fan H Y 2003 J. Opt. B: Quantum Semiclass, Opt. 5 R147
[2] W"unsche A 1999 J. Opt. B: Quantum Semiclass 1 R11
[3] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[4] Meng X G, Wang J S and Liang B L 2010 Chin. Phys. B 19 044202
[5] Wang J S, Meng X G and Liang B L 2010 Chin. Phys. B 19 014207
[6] Liang B L, Wang J S, Meng X G and Su J 2010 Chin. Phys. B 19 010315
[7] Glauber R J 1963 Phys. Rev. 130 2529
[8] Glauber R J 1963 Phys. Rev. 131 2766
[9] Klauder R J and Skagerstam B S 1985 Coherence States (Singapore: World Scientific)
[10] Parker S, Bose S and Plenio M B 2000 Phys. Rev. A 61 032305
[11] Fan H Y and Guo Q 2008 Commun. Theor. Phys. 49 859
[12] Fan H Y and Lu H L 2004 J. Phys. A: Math. Gen. 37 10993
[13] Xu S M, Xu X L, Li H Q and Wang J S 2009 Science in China Series G: Physics Mechanics Astronomy 52 1027
[14] Xu S M Xu X L Li H Q and Wang J S 2009 Phys. Lett. A 373 2824 endfootnotesize
[1] Quantum multicast schemes of different quantum states via non-maximally entangled channels with multiparty involvement
Yan Yu(于妍), Nan Zhao(赵楠), Chang-Xing Pei(裴昌幸), and Wei Li(李玮). Chin. Phys. B, 2021, 30(9): 090302.
[2] Universal quantum circuit evaluation on encrypted data using probabilistic quantum homomorphic encryption scheme
Jing-Wen Zhang(张静文), Xiu-Bo Chen(陈秀波), Gang Xu(徐刚), and Yi-Xian Yang(杨义先). Chin. Phys. B, 2021, 30(7): 070309.
[3] Optical complex integration-transform for deriving complex fractional squeezing operator
Ke Zhang(张科), Cheng-Yu Fan(范承玉), Hong-Yi Fan(范洪义). Chin. Phys. B, 2020, 29(3): 030306.
[4] Finite-dimensional pair coherent state engendered via the nonlinear Bose operator realization and its Wigner phase-space distributions
Jianming Liu(刘建明), Xiangguo Meng(孟祥国). Chin. Phys. B, 2019, 28(12): 124206.
[5] Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
Ji-Suo Wang(王继锁), Xiang-Guo Meng(孟祥国), Hong-Yi Fan(范洪义). Chin. Phys. B, 2019, 28(10): 100301.
[6] Direct measurement of the concurrence of hybrid entangled state based on parity check measurements
Man Zhang(张曼), Lan Zhou(周澜), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2019, 28(1): 010301.
[7] Fractional squeezing-Hankel transform based on the induced entangled state representations
Cui-Hong Lv(吕翠红), Su-Qing Zhang(张苏青), Wen Xu(许雯). Chin. Phys. B, 2018, 27(9): 094206.
[8] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[9] Generation of entangled TEM01 modes withperiodically poled KTiOPO4 crystal
Rong-Guo Yang(杨荣国), Jing-jing Wang(王晶静), Jing Zhang(张静), Heng-Xin Sun(孙恒信). Chin. Phys. B, 2016, 25(7): 074208.
[10] Anonymous voting for multi-dimensional CV quantum system
Rong-Hua Shi(施荣华), Yi Xiao(肖伊), Jin-Jing Shi(石金晶), Ying Guo(郭迎), Moon-Ho Lee. Chin. Phys. B, 2016, 25(6): 060301.
[11] Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation
Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁), Hong-Yi Fan(范洪义), Cheng-Wei Xia(夏承魏). Chin. Phys. B, 2016, 25(4): 040302.
[12] Deformed photon-added entangled squeezed vacuum and one-photon states: Entanglement, polarization, and nonclassical properties
A Karimi, M K Tavassoly. Chin. Phys. B, 2016, 25(4): 040303.
[13] Hybrid entanglement concentration assisted with single coherent state
Rui Guo(郭锐), Lan Zhou(周澜), Shi-Pu Gu(顾世浦),Xing-Fu Wang(王兴福), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2016, 25(3): 030302.
[14] On the correspondence between three nodes W states in quantum network theory and the oriented links in knot theory
Gu Zhi-Yu (顾之雨), Qian Shang-Wu (钱尚武). Chin. Phys. B, 2015, 24(4): 040301.
[15] Quantum communication for satellite-to-ground networks with partially entangled states
Chen Na (陈娜), Quan Dong-Xiao (权东晓), Pei Chang-Xing (裴昌幸), Yang-Hong (杨宏). Chin. Phys. B, 2015, 24(2): 020304.
No Suggested Reading articles found!