Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 010302    DOI: 10.1088/1674-1056/20/1/010302
RAPID COMMUNICATION Prev   Next  

Nonlinear dynamical symmetries of Smorodinsky–Winternitz and and Fokas–Lagerstorm systems

Li You-Ning(李佑宁) and Huang Hua-Jun(黄华俊)
Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  General solutions of the Smorodinsky–Winternitz system and the Fokas–Lagerstorm system, which are superintegrable in two-dimensional Euclidean space, are obtained using the algebraic method (structure function). Their dynamical symmetries, which are governed by deformed angular momentum algebras, are revealed.
Keywords:  dynamical symmetry      superintegrable system      deformed angular momentum algebra  
Received:  05 July 2010      Revised:  07 September 2010      Accepted manuscript online: 
PACS:  03.65.Fd (Algebraic methods)  
  02.30.Ik (Integrable systems)  
  02.20.Qs (General properties, structure, and representation of Lie groups)  
Fund: Project supported by the State Key Basic Research Development Programs (Grant Nos. 2007CB815005 and 2009CB929402).

Cite this article: 

Li You-Ning(李佑宁) and Huang Hua-Jun(黄华俊) Nonlinear dynamical symmetries of Smorodinsky–Winternitz and and Fokas–Lagerstorm systems 2011 Chin. Phys. B 20 010302

[1] Tempesta P, Winternitz P, Harnad J, Miller Jr W, Pogosyan G and Rodriguez M 2005 Superintegrability in Classical and Quantum Systems (Providence: American Mathematical Society)
[2] Arnold I 1989 Mathematical Methods of Classical Mechanics (2nd ed) (Berlin: Springer) p271
[3] Eisenhart L P 1934 Ann. Math. 35 284
[4] Kalninsa E G, Kressb J M and Winternitzc P 2002 J. Math. Phys. 43 970
[5] Bertrand J 1873 C. R. Acad. Sci. 77 849
[6] Drinfeld V G 1987 Proceedings of the International Congress of Mathematicians Berkeley May 1986 (Providence: American Mathematical Society) bf 1 798
[7] Rovcek M 1991 Phys. Lett. B 255 554
[8] Boer J De, Harmsze F and Tjin T 1996 Phys. Rep. 272 139
[9] Ruan D 2001 Recent Progresses in Quantum Mechanics (Beijing: Peking University) (in Chinese) p344
[10] Ruan D, Wang F, Tu C C and Sun H Z 2000 Commun. Theor. Phys. 34 643
[11] Ruan D, Li Y S and Sun H Z 2007 Commun. Theor. Phys. 47 529
[12] Carfora M, Martellini M and Marzuoli A 2001 Integrable Systems and Quantum Groups (Singapore: World Scientific)
[13] Castellani L and Wess J 1996 Quantum Groups and Their Applications in Physics (Burke: IOS)
[14] Yu F J and Zhang H Q 2008 Chin. Phys. B 17 1574
[15] Ni Z X 2001 Acta Phys. Sin. 50 406 (in Chinese)
[16] Yang Q Z and Xu B W 1994 Acta Phys. Sin. 43 689 (in Chinese)
[17] Chang Z, Guo H Y and Yan H 1991 Acta Phys. Sin. 40 1377 (in Chinese)
[18] Fris J, Mandrosov V, Amorodinsky Y A, Uhlir M and Winternitz P 1965 Phys. Lett. 16 354
[19] Fokas A S and Lagerstrom P A 1980 J. Math. Anal. Appl. 74 325
[20] Tempesta P, Alexander, Turbiner V and Winternitz P 2001 J. Math. Phys. 42 4248
[21] Bonatsos D, Daskaloyannis C and Kokkotas K 1994 Phys. Rev. A 50 3707
[22] Biedenharn L C and Louck J D 1981 Angular Momentum in Quantum Physics (Massachusetts: Addison-Wesley, Reading) p29
[23] Iachello F 1993 Rev. Mod. Phys. 65 569
[24] Zheng Y J and Ding S L 2000 Chin. Sci. Bull. 45 331
[25] Wang S J and Zhang H 2008 Sci. in China G 51 577
[26] Ruan D and Sun H Z 2004 Commun. Theor. Phys. 42 379
[27] Verrier P E and Evans N W 2008 J. Math. Phys. 49 022902 endfootnotesize
[1] On superintegrable systems with a position-dependent mass in polar-like coordinates
Hai Zhang(章海)†. Chin. Phys. B, 2020, 29(10): 100201.
[2] Deformed oscillator algebra for quantum superintegrable systems in two-dimensional Euclidean space and on the complex two-sphere
H. Panahi, Z. Alizadeh. Chin. Phys. B, 2013, 22(6): 060304.
[3] A new eight-dimensional Lie superalgebra and two corresponding hierarchies of evolution equations
Wang Xin-Zeng(王新赠) and Dong Huan-He(董焕河) . Chin. Phys. B, 2010, 19(1): 010202.
[4] Stochastic resonance and nonequilibrium dynamic phase transition of Ising spin system driven by a joint external field
Shao Yuan-Zhi (邵元智), Zhong Wei-Rong (钟伟荣), Lin Guang-Ming (林光明), Li Jian-Can (李坚灿). Chin. Phys. B, 2005, 14(10): 2110-2116.
No Suggested Reading articles found!