Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 094206    DOI: 10.1088/1674-1056/19/9/094206
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Entanglement transfer via the Raman atom–cavity-field interaction

Liang Mai-Lin(梁麦林) and Yuan Bing(袁兵)
Physics Department, School of Science, Tianjin University, Tianjin 300072, China
Abstract  For the Raman interaction between an atom and a two-mode cavity field prepared in the state |01$\rangle$ or |10$\rangle$, the atom and the field can be disentangled periodically. Such a property of Raman atom–field interaction allows the full entanglement transfer among many atoms and bimodal cavities. In the calculations, each atom is assumed to interact with its own cavity at a different time and so non-identical atoms can be treated conveniently. Entanglement sudden death is discussed too. Though atom–field interaction greatly changes the values of the concurrence for two atoms, configuration of the concurrence is almost not affected. When there is entanglement sudden death, atoms and cavities can still be entangled with one another. However, full entanglement transfer cannot be achieved for such systems with Raman atom–field interaction.
Keywords:  quantum information      entanglement      entanglement transfer      atom  
Received:  11 January 2010      Revised:  15 March 2010      Accepted manuscript online: 
PACS:  4250  
  0365  

Cite this article: 

Liang Mai-Lin(梁麦林) and Yuan Bing(袁兵) Entanglement transfer via the Raman atom–cavity-field interaction 2010 Chin. Phys. B 19 094206

[1] Ekert A K 1991 Phys. Rev. Lett. 67 661
[2] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wooters K 1993 Phys. Rev. Lett. 70 1895
[3] Murao M, Jonathan D, Plenio M B and Vedral V 1999 Phys. Rev. A 59 156
[4] Kane B E 1998 Nature (London) 393 133
[5] Bennett C H and Divincenzo D P 2000 Nature (London) 404 247
[6] Galindo A and Martin-Delgado M A 2002 Rev. Mod. Phys. 74 347
[7] Hald J, Sorensen J L, Schori C and Polzik E S 2000 J. Mod. Opt. 47 2599
[8] Son W, Kim M S, Lee J and Ahn D 2002 J. Mod. Opt. 49 1739
[9] Cui H P, Zou J, Li J and Shao B 2008 Commun. Theor. Phys. 49 1182
[10] Chang P, Shao B and Long G L 2008 Phys. Lett. A 372 7124
[11] Wang J X, Yang Z Y and An M Y 2007 Acta Phys. Sin. 56 6420 (in Chinese)
[12] Xiong H N and Guo H 2007 Chin. Phys. Lett. 24 1805
[13] Paternostro M, Son W, Kim M S, Falci G and Palma G M 2004 Phys. Rev. A 70 022320
[14] Paternostro M, Son W and Kim M S 2004 Phys. Rev. Lett. 92 197901
[15] Zou J, Li J G, Shao B, Li J and Qian S L 2006 Phys. Rev. A 73 024319
[16] Casagrande F, Lulli A and Paris M G A 2007 Phys. Rev. A 75 032336
[17] Casagrande F, Lulli A and Paris M G A 2009 Phys. Rev. A 79 022307
[18] Liang M L, Yuan B and Zhang J N 2009 Phys. Scr. 79 055401
[19] Lee J, Paternostro M, Kim S and Bose S 2006 Phys. Rev. Lett. 96 080501
[20] Meyer D A and Wallach N R 2002 J. Math. Phys. 43 4273
[21] Agarwal A S and Biswas A 2005 J. Opt. B 7 350
[22] Plenio M B and Vedral V 1998 Contemp. Phys. 39 431
[23] Barnett S M and Phoenix S J D 1989 Phys. Rev. A 40 2204
[24] Barnett S M and Knight P L 1985 J. Opt. Soc. Am. B 2 467
[25] Peres A 1996 Phys. Rev. Lett. 77 1413
[26] Horodecki M, Horodecki P and Horodecki R 1996 Phys. Lett. A 223 1
[27] Hill H and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[28] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[29] O'Connor K M and Wootters W K 2001 Phys. Rev. A 63 052302
[30] Li Z J, Li J Q, Jin Y H and Nie Y H 2007 J. Phys. B 40 3401
[31] Chen L, Shao X Q and Zhang S 2009 Chin. Phys. B 18 4676
[32] Deng X J, Fang M F and Kang G D 2009 Chin. Phys. B 18 4100
[33] Zheng Q, Zhang X P and Ren Z Z 2008 Chin. Phys. B 17 3553
[34] Yu T and Eberly J H 2009 Science 323 598
[35] Gerry C C and Eberly J H 1990 Phys. Rev. A 42 6805
[36] Cardimona D A, Kovanis V, Sharma M P and Gavrielides A 1991 Phys. Rev. A 43 3710
[37] Zhang G M, Li Y K and Gao Y F 2004 Acta Phys. Sin. 53 3739 (in Chinese)
[38] Bennett C H, DiVincenzo D P, Smolin J and Wootters W K 1996 Phys. Rev. A 54 3824 endfootnotesize
[1] Nonreciprocal negative refraction in a dense hot atomic medium
Hai Yi(易海), Hongjun Zhang(张红军), and Hui Sun(孙辉). Chin. Phys. B, 2023, 32(4): 044202.
[2] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[3] A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography
Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬). Chin. Phys. B, 2023, 32(4): 040702.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[6] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[7] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[8] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[9] Ridge regression energy levels calculation of neutral ytterbium (Z = 70)
Yushu Yu(余雨姝), Chen Yang(杨晨), and Gang Jiang(蒋刚). Chin. Phys. B, 2023, 32(3): 033101.
[10] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[11] Fine and hyperfine structures of pionic helium atoms
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2023, 32(2): 023601.
[12] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[13] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[14] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[15] Space continuous atom laser in one dimension
Yi Qin(秦毅), Xiao-Yang Shen(沈晓阳), Wei-Xuan Chang(常炜玄), and Lin Xia(夏林). Chin. Phys. B, 2023, 32(1): 013701.
No Suggested Reading articles found!