Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 094207    DOI: 10.1088/1674-1056/19/9/094207
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Generation of a four-particle entangled state via cross-Kerr nonlinearity

Zhao Li-Fang(赵丽芳), Lai Bo-Hui(赖柏辉), Mei Feng(梅锋), Yu Ya-Fei(於亚飞), Feng Xun-Li(冯勋立), and Zhang Zhi-Ming(张智明)
Laboratory of Photonic Information Technology, SIPSE and LQIT, South China Normal University, Guangzhou 510006, China
Abstract  We propose a scheme for generating a genuine four-particle polarisation entangled state |χ00$\rangle$ that has many interesting entanglement properties and potential applications in quantum information processing. In our scheme, we use the weak cross-Kerr nonlinear interaction between field-modes and the non-demolition measurement method based on highly efficient homodyne detection, which is feasible under the current experiment conditions.
Keywords:  four-particle entangled state      cross-Kerr nonlinearity  
Received:  24 January 2010      Revised:  03 March 2010      Accepted manuscript online: 
PACS:  4250  
  0365  
  0367  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60978009 ), and the National Basic Research Program of China (Grant Nos. 2009CB929604 and 2007CB925204).

Cite this article: 

Zhao Li-Fang(赵丽芳), Lai Bo-Hui(赖柏辉), Mei Feng(梅锋), Yu Ya-Fei(於亚飞), Feng Xun-Li(冯勋立), and Zhang Zhi-Ming(张智明) Generation of a four-particle entangled state via cross-Kerr nonlinearity 2010 Chin. Phys. B 19 094207

[1] Nielsen N A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Bouwmeester D, Ekert A and Zeilinger A 2000 The Physics of Quantum Information (Berlin: Spinger)
[3] Alber G, Beth T, Horodecki M, Horodecki P, Horodecki R, Rotteler M, Weinfurter H, Werner R and Zeilinger A 2001 Quantum Information (Berlin: Spinger)
[4] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[5] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[6] Hao J C, Li C F and Guo G C 2001 Phys. Rev. A 63 054301
[7] Bruβ D, Vincenzo D P, Ekert A, Fuchs C A, Macchiavello C and Smolin J A 1998 Phys. Rev. A 57 2368
[8] Zhang C W, Li C F, Wang Z Y and Guo G C 2000 Phys. Rev. A 62 042302
[9] Deutsch D and Jozsa R 1992 Proc. R. Soc. London Ser. A 439 533
[10] Yang R C, Li H C, Chen M X and Lin X 2006 Chin. Phys. 15 2315
[11] Pan J W, Daniell M, Gasparoni S, Weihs G and Zeilinger A 2001 Phys. Rev. Lett. 86 4435
[12] Osnaghi S, Bertet P, Auffeves A, Maioli P, Brune M, Raimond J M and Haroche S 2001 Phys. Rev. Lett. 87 037902
[13] Huang Y X and Zhan M S 2004 Chin. Phys. 13 2021
[14] H"affner H, H"ansel W, Roos C F, Benhelm J, Chek-al-kar D, Chwalla M, K"orber T, Rapol U D, Riebe M, Schmitt P O, Becher C, G"uhne O, D"ur W and Blatt R 2005 Nature (London) 438 643
[15] Tanamoto T, Liu Y X, Fujita S, Hu X D and Nori F 2006 Phys. Rev. Lett. 97 230501
[16] Zhu S L, Wang Z D and Zanardi P 2005 Phys. Rev. Lett. 94 100502
[17] Deng Z J, Feng M and Gao K L 2006 Phys. Rev. A 73 014302
[18] Zhang Z M, Khosa A H, Ikram M and Zubairy M S 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1917
[19] Yang J, Ren M, Yu Y F, Zhang Z M and Liu S H 2008 Acta Phys. Sin. 57 887 (in Chinese)
[20] Jeong H 2006 Phys. Rev. A 73 052320
[21] Yeo Y and Chua W K 2006 Phys. Rev. Lett. 96 060502
[22] Zhang Z M, Yang J and Yu Y F 2008 J. Phys. B: At. Mol. Opt. Phys. 41 025502
[23] Gao M, Hu W H and Li C Z 2007 J. Phys. B: At. Mol. Opt. Phys. 40 3525
[24] Jin G S, Lin Y and Wu B 2007 Phys. Rev. A 75 054302
[25] Sanders B C and Miburn G J 1992 Phys. Rev. A 45 1919
[26] Gerry C C 1999 Phys. Rev. A 59 4095
[27] Leonhardt U 1997 Measuring the Quantum State of Light (Cambridge: Cambridge University Press)
[28] Bachor H A and Ralph T C 2004 A Guide to Experiments in Quantum Optics ( Weinhein: Wiley-VCH Verlag GmbH & Co. KgaA)
[29] Munro W J, Nemoto Kae, Spiller T P, Barrett S D, Kok Pieter and Beausoleil R G 2005 J. Opt. B. Quantum Semiclass. Opt. 7 S135
[30] Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P and Milburn G J 2007 Rev. Mod. Phys. 79 135
[31] Ladd T D 2006 New J. Phys. 8 184
[32] Munro W J, Nemoto K and Spiller T P 2005 New J. Phys. 7 137 endfootnotesize
[1] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[2] Bidirectional transfer of quantum information for unknown photons via cross-Kerr nonlinearity and photon-number-resolving measurement
Jino Heo, Chang-Ho Hong, Dong-Hoon Lee, Hyung-Jin Yang. Chin. Phys. B, 2016, 25(2): 020306.
[3] Efficient entanglement concentration for arbitrary less-entangled NOON state assisted by single photons
Lan Zhou(周澜) and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2016, 25(2): 020308.
[4] Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity
Jino Heo, Chang-Ho Hong, Jong-In Lim, Hyung-Jin Yang. Chin. Phys. B, 2015, 24(5): 050304.
[5] Generation of hyperentangled four-photon cluster state via cross-Kerr nonlinearity
Yan Xiang (闫香), Yu Ya-Fei (於亚飞), Zhang Zhi-Ming (张智明). Chin. Phys. B, 2014, 23(6): 060306.
[6] Complete four-photon cluster-state analyzer based on cross-Kerr nonlinearity
Wang Zhi-Hui (王志会), Zhu Long (朱龙), Su Shi-Lei (苏石磊), Guo Qi (郭奇), Cheng Liu-Yong (程留永), Zhu Ai-Dong (朱爱东), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(9): 090309.
[7] Efficient three-step entanglement concentration for an arbitrary four-photon cluster state
Si Bin (司斌), Su Shi-Lei (苏石磊), Sun Li-Li (孙立莉), Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(3): 030305.
[8] Two-qubit and three-qubit controlled gates with cross-Kerr nonlinearity
Zhao Rui-Tong (赵瑞通), Guo Qi (郭奇), Cheng Liu-Yong (程留永), Sun Li-Li (孙立莉), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(3): 030313.
[9] Generating a four-photon polarization-entangled cluster state with homodyne measurement via cross-Kerr nonlinearity
Su Shi-Lei(苏石磊), Wang Yuan(王媛), Guo Qi(郭奇), Wang Hong-Fu(王洪福), and Zhang Shou(张寿) . Chin. Phys. B, 2012, 21(4): 044205.
[10] A realizable multi-bit dense coding scheme with an Einstein–Podolsky–Rosen channel
Guo Qi (郭奇), Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿), Yeon Kyu-Hwang. Chin. Phys. B, 2012, 21(10): 100301.
[11] A nearly deterministic scheme for generation of multiphoton GHZ states with weak cross-Kerr nonlinearity
Wang Yi(王奕), Ye Liu(叶柳), and Fang Bao-Long(方保龙) . Chin. Phys. B, 2011, 20(10): 100313.
[12] Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a partial entangled pair
Dai Hong-Yi (戴宏毅), Li Cheng-Zu (李承祖), Chen Ping-Xing (陈平行). Chin. Phys. B, 2003, 12(12): 1354-1359.
No Suggested Reading articles found!