CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effects of InGaN barriers with low indium content on internal quantum efficiency of blue InGaN multiple quantum wells |
Wang Lai(汪莱)† , Wang Jia-Xing(王嘉星), Zhao Wei(赵维), Zou Xiang(邹翔), and Luo Yi(罗毅) |
Tsinghua National Laboratory for Information Science and Technology / State Key Lab on Integrated Optoelectronics, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China |
|
|
Abstract Blue In0.2Ga0.8N multiple quantum wells (MQWs) with InxGa1-xN (x=0.01-0.04) barriers are grown by metal organic vapour phase epitaxy. The internal quantum efficiencies (IQEs) of these MQWs are studied in a way of temperature-dependent photoluminescence spectra. Furthermore, a 2-channel Arrhenius model is used to analyse the nonradiative recombination centres (NRCs). It is found that by adopting the InGaN barrier beneath the lowest well, it is possible to reduce the strain hence the NRCs in InGaN MQWs. By optimizing the thickness and the indium content of the InGaN barriers, the IQEs of InGaN/InGaN MQWs can be increased by about 2.5 times compared with conventional InGaN/GaN MQWs. On the other hand, the incorporation of indium atoms into the intermediate barriers between adjacent wells does not improve IQE obviously. In addition, the indium content of the intermediate barriers should match with that of the lowest barrier to avoid relaxation.
|
Accepted manuscript online:
|
PACS:
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
73.21.Fg
|
(Quantum wells)
|
|
78.67.De
|
(Quantum wells)
|
|
81.15.Kk
|
(Vapor phase epitaxy; growth from vapor phase)
|
|
78.55.Cr
|
(III-V semiconductors)
|
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60536020, 60723002, 50706022 and 60977022), the National Basic Research Program of China (Grant Nos. 2006CB302800 and 2006CB921106), the National High Techgnology Research and Development Program of China (Grant Nos. 2007AA05Z429 and 2008AA03A194), the Beijing Natural Science Foundation, China (Grant No. 4091001), and the Industry, Academia and Research combining and Public Science and Technology Special Program of Shenzhen, China (Grant No. 08CXY-14). |
Cite this article:
Wang Lai(汪莱), Wang Jia-Xing(王嘉星), Zhao Wei(赵维), Zou Xiang(邹翔), and Luo Yi(罗毅) Effects of InGaN barriers with low indium content on internal quantum efficiency of blue InGaN multiple quantum wells 2010 Chin. Phys. B 19 076803
|
[1] |
Steigerwald D A, Bhat J C, Collins D, Fletcher R M, Holcomb M O, Ludowise M J, Martin P S and Rudaz S L 2002 IEEE J. Sel. Top. Quantum Electron. 8 310
|
[2] |
Krames M R, Collins J B D, Gardner N F, Gotz W, Lowery C H, Ludowise M, Martin P S, Mueller G, Mueller-Mach R, Rudaz S, Steigerwald D A, Stockman S A and Wierer J J 2002 Physica Status Solidi A 192 237
|
[3] |
Rahman F 2006 Electron. World 113 30
|
[4] |
Sasaoka C, Sunakawa H, Kimura A, Nido M, Usui A and Sakai A 1998 J. Cryst. Growth 189 61
|
[5] |
Kim S, Lee K, Park K and Kim C S 2003 J. Cryst. Growth 247 62
|
[6] |
Cho H K, Lee J Y, Yang G M and Kim C S 2001 Appl. Phys. Lett. 79 215
|
[7] |
Della Sala F, Di Carlo A, Lugli P, Bernardini F, Fiorentini V, Scholz R and Jancu J M 1999 Appl. Phys. Lett. 74 2002
|
[8] |
Chichibu S F, Abare A C, Mack M P, Minsky M S, Deguchi T, Cohen D, Kozodoy P, Fleischer S B, Keller S, Speck J S, Bowers J E, Hu E, Mishra U K, Coldren L A, DenBaars S P, Wada K, Sota T and Nakamura S 1999 Mater. Sci. Eng. B 59 298
|
[9] |
Tao R C, Yu T J, Jia C Y, Chen Z Z, Qin Z X and Zhang G Y 2009 Chin. Phys. B 18 2603
|
[10] |
Akasaka T, Gotoh H, Saito T and Makimoto T 2004 Appl. Phys. Lett. 85 3089
|
[11] |
Son J K, Lee S N, Sakong T, Paek H S, Nam O, Park Y, Hwang J S, Kim J Y and Cho Y H 2006 J. Cryst. Growth 287 558
|
[12] |
Xing Y H, Han J, Liu J P, Deng J, Niu N H and Shen G D 2007 Acta Phys. Sin. 56 7295 (in Chinese)
|
[13] |
Niu N H, Wang H B, Liu J P, Liu N X, Xing Y H, Han J, Deng J and Shen G D 2006 J. Cryst. Growth 286 209
|
[14] |
Lu C F, Huang C F, Chen Y S and Yang C C 2008 J. Appl. Phys. 104 043108
|
[15] |
Wang X H, Jia H Q, Guo L W, Xing Z G, Wang Y, Pei X J, Zhou J M and Chen H 2007 Appl. Phys. Lett. 91 161912
|
[16] |
Xie J Q, Ni X F, Fan Q, Shimada R, "Ozg"ur "U and Morkocc H 2008 Appl. Phys. Lett. 93 121107
|
[17] |
Ni X, Li X, Xie J, Fan Q, Shimada R, "Ozg"ur "U and Morkocc H 2009 Proc. SPIE 7216 72161W
|
[18] |
Li X, Liu H, Ni X, "Ozg"ur "U and Morkocc H 2010 Superlattices and Microstructures 47 118
|
[19] |
Hao M, Zhang J, Zhang X H and Chua S 2002 Appl. Phys. Lett. 81 5129
|
[20] |
Zheng X H, Chen H, Yan Z B, Li D S, Yu H B, Huang Q and Zhou J M 2004 J. Appl. Phys. 96 1899
|
[21] |
Kim I H, Park H S, Park Y J and Kim T 1998 Appl. Phys. Lett. 73 1634
|
[22] |
Hangleiter A, Hitzel F, Netzel C, Fuhrmann D, Rossow U, Ade G and Hinze P 2005 Phys. Rev. Lett. 95 127402
|
[23] |
Kaneta A, Funato M and Kawakami Y 2008 Phys. Rev. B 78 125317 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|