Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 076803    DOI: 10.1088/1674-1056/19/7/076803
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of InGaN barriers with low indium content on internal quantum efficiency of blue InGaN multiple quantum wells

Wang Lai(汪莱), Wang Jia-Xing(王嘉星), Zhao Wei(赵维), Zou Xiang(邹翔), and Luo Yi(罗毅)
Tsinghua National Laboratory for Information Science and Technology / State Key Lab on Integrated Optoelectronics, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Abstract  Blue In0.2Ga0.8N multiple quantum wells (MQWs) with InxGa1-xN (x=0.01-0.04) barriers are grown by metal organic vapour phase epitaxy. The internal quantum efficiencies (IQEs) of these MQWs are studied in a way of temperature-dependent photoluminescence spectra. Furthermore, a 2-channel Arrhenius model is used to analyse the nonradiative recombination centres (NRCs). It is found that by adopting the InGaN barrier beneath the lowest well, it is possible to reduce the strain hence the NRCs in InGaN MQWs. By optimizing the thickness and the indium content of the InGaN barriers, the IQEs of InGaN/InGaN MQWs can be increased by about 2.5 times compared with conventional InGaN/GaN MQWs. On the other hand, the incorporation of indium atoms into the intermediate barriers between adjacent wells does not improve IQE obviously. In addition, the indium content of the intermediate barriers should match with that of the lowest barrier to avoid relaxation.
Keywords:  metal organic vapour phase epitaxy      quantum wells      nitrides      light emitting diodes  
Accepted manuscript online: 
PACS:  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  73.21.Fg (Quantum wells)  
  78.67.De (Quantum wells)  
  81.15.Kk (Vapor phase epitaxy; growth from vapor phase)  
  78.55.Cr (III-V semiconductors)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60536020, 60723002, 50706022 and 60977022), the National Basic Research Program of China (Grant Nos. 2006CB302800 and 2006CB921106), the National High Techgnology Research and Development Program of China (Grant Nos. 2007AA05Z429 and 2008AA03A194), the Beijing Natural Science Foundation, China (Grant No. 4091001), and the Industry, Academia and Research combining and Public Science and Technology Special Program of Shenzhen, China (Grant No. 08CXY-14).

Cite this article: 

Wang Lai(汪莱), Wang Jia-Xing(王嘉星), Zhao Wei(赵维), Zou Xiang(邹翔), and Luo Yi(罗毅) Effects of InGaN barriers with low indium content on internal quantum efficiency of blue InGaN multiple quantum wells 2010 Chin. Phys. B 19 076803

[1] Steigerwald D A, Bhat J C, Collins D, Fletcher R M, Holcomb M O, Ludowise M J, Martin P S and Rudaz S L 2002 IEEE J. Sel. Top. Quantum Electron. 8 310
[2] Krames M R, Collins J B D, Gardner N F, Gotz W, Lowery C H, Ludowise M, Martin P S, Mueller G, Mueller-Mach R, Rudaz S, Steigerwald D A, Stockman S A and Wierer J J 2002 Physica Status Solidi A 192 237
[3] Rahman F 2006 Electron. World 113 30
[4] Sasaoka C, Sunakawa H, Kimura A, Nido M, Usui A and Sakai A 1998 J. Cryst. Growth 189 61
[5] Kim S, Lee K, Park K and Kim C S 2003 J. Cryst. Growth 247 62
[6] Cho H K, Lee J Y, Yang G M and Kim C S 2001 Appl. Phys. Lett. 79 215
[7] Della Sala F, Di Carlo A, Lugli P, Bernardini F, Fiorentini V, Scholz R and Jancu J M 1999 Appl. Phys. Lett. 74 2002
[8] Chichibu S F, Abare A C, Mack M P, Minsky M S, Deguchi T, Cohen D, Kozodoy P, Fleischer S B, Keller S, Speck J S, Bowers J E, Hu E, Mishra U K, Coldren L A, DenBaars S P, Wada K, Sota T and Nakamura S 1999 Mater. Sci. Eng. B 59 298
[9] Tao R C, Yu T J, Jia C Y, Chen Z Z, Qin Z X and Zhang G Y 2009 Chin. Phys. B 18 2603
[10] Akasaka T, Gotoh H, Saito T and Makimoto T 2004 Appl. Phys. Lett. 85 3089
[11] Son J K, Lee S N, Sakong T, Paek H S, Nam O, Park Y, Hwang J S, Kim J Y and Cho Y H 2006 J. Cryst. Growth 287 558
[12] Xing Y H, Han J, Liu J P, Deng J, Niu N H and Shen G D 2007 Acta Phys. Sin. 56 7295 (in Chinese)
[13] Niu N H, Wang H B, Liu J P, Liu N X, Xing Y H, Han J, Deng J and Shen G D 2006 J. Cryst. Growth 286 209
[14] Lu C F, Huang C F, Chen Y S and Yang C C 2008 J. Appl. Phys. 104 043108
[15] Wang X H, Jia H Q, Guo L W, Xing Z G, Wang Y, Pei X J, Zhou J M and Chen H 2007 Appl. Phys. Lett. 91 161912
[16] Xie J Q, Ni X F, Fan Q, Shimada R, "Ozg"ur "U and Morkocc H 2008 Appl. Phys. Lett. 93 121107
[17] Ni X, Li X, Xie J, Fan Q, Shimada R, "Ozg"ur "U and Morkocc H 2009 Proc. SPIE 7216 72161W
[18] Li X, Liu H, Ni X, "Ozg"ur "U and Morkocc H 2010 Superlattices and Microstructures 47 118
[19] Hao M, Zhang J, Zhang X H and Chua S 2002 Appl. Phys. Lett. 81 5129
[20] Zheng X H, Chen H, Yan Z B, Li D S, Yu H B, Huang Q and Zhou J M 2004 J. Appl. Phys. 96 1899
[21] Kim I H, Park H S, Park Y J and Kim T 1998 Appl. Phys. Lett. 73 1634
[22] Hangleiter A, Hitzel F, Netzel C, Fuhrmann D, Rossow U, Ade G and Hinze P 2005 Phys. Rev. Lett. 95 127402
[23] Kaneta A, Funato M and Kawakami Y 2008 Phys. Rev. B 78 125317 endfootnotesize
[1] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[2] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[3] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[4] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[5] Epitaxy of III-nitrides on two-dimensional materials and its applications
Yu Xu(徐俞), Jianfeng Wang(王建峰), Bing Cao(曹冰), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(11): 117702.
[6] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[7] Comparison of resonant tunneling diodes grown on freestanding GaN substrates and sapphire substrates by plasma-assisted molecular-beam epitaxy
Xiang-Peng Zhou(周祥鹏), Hai-Bing Qiu(邱海兵), Wen-Xian Yang(杨文献), Shu-Long Lu(陆书龙), Xue Zhang(张雪), Shan Jin(金山), Xue-Fei Li(李雪飞), Li-Feng Bian(边历峰), and Hua Qin(秦华). Chin. Phys. B, 2021, 30(12): 127301.
[8] Improved blue quantum dot light-emitting diodes via chlorine passivated ZnO nanoparticle layer
Xiangwei Qu(瞿祥炜), Jingrui Ma(马精瑞), Siqi Jia(贾思琪), Zhenghui Wu(吴政辉), Pai Liu(刘湃), Kai Wang(王恺), and Xiao-Wei Sun(孙小卫). Chin. Phys. B, 2021, 30(11): 118503.
[9] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
[10] Near-infrared lead chalcogenide quantum dots: Synthesis and applications in light emitting diodes
Haochen Liu(刘皓宸), Huaying Zhong(钟华英), Fankai Zheng(郑凡凯), Yue Xie(谢阅), Depeng Li(李德鹏), Dan Wu(吴丹), Ziming Zhou(周子明), Xiao-Wei Sun(孙小卫), Kai Wang(王恺). Chin. Phys. B, 2019, 28(12): 128504.
[11] Photoluminescence properties of blue and green multiple InGaN/GaN quantum wells
Chang-Fu Li(李长富), Kai-Ju Shi(时凯居), Ming-Sheng Xu(徐明升), Xian-Gang Xu(徐现刚), Zi-Wu Ji(冀子武). Chin. Phys. B, 2019, 28(10): 107803.
[12] Current diffusion and efficiency droop in vertical light emitting diodes
R Q Wan(万荣桥), T Li(李滔), Z Q Liu(刘志强), X Y Yi(伊晓燕), J X Wang(王军喜), J H Li(李军辉), W H Zhu(朱文辉), J M Li(李晋闽), L C Wang(汪炼成). Chin. Phys. B, 2019, 28(1): 017203.
[13] Visualizing light-to-electricity conversion process in InGaN/GaN multi-quantum wells with a p-n junction
Yangfeng Li(李阳锋), Yang Jiang(江洋), Junhui Die(迭俊珲), Caiwei Wang(王彩玮), Shen Yan(严珅), Haiyan Wu(吴海燕), Ziguang Ma(马紫光), Lu Wang(王禄), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2018, 27(9): 097104.
[14] Characteristic improvements of thin film AlGaInP red light emitting diodes on a metallic substrate
Bin Zhao(赵斌), Wei Hu(胡巍), Xian-Sheng Tang(唐先胜), Wen-Xue Huo(霍雯雪), Li-Li Han(韩丽丽), Ming-Long Zhao(赵明龙), Zi-Guang Ma(马紫光), Wen-Xin Wang(王文新), Hai-Qiang Jia(贾海强), Hong Chen(陈弘). Chin. Phys. B, 2018, 27(4): 047803.
[15] Improvement of electro-optic performances in white organic light emitting diodes with color stability by buffer layer and multiple dopants structure
Zhi-Qi Kou(寇志起), Yu Tang(唐宇), Li-Ping Yang(杨丽萍), Fei-Yu Yang(杨飞宇), Wen-Jun Guo(郭文军). Chin. Phys. B, 2018, 27(10): 107801.
No Suggested Reading articles found!