Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 066301    DOI: 10.1088/1674-1056/19/6/066301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

The effects of cubic potentials on discrete breathers in a mixed Klein-Gordon /Fermi-Pasta-Ulam chain

Zhou Qian(周倩), LÜ Bin-Bin(吕彬彬), and Tian Qiang(田强)
Department of Physics, Beijing Normal University, Beijing 100875, China
Abstract  Nonlinearity has a crucial impact on the symmetry properties of dynamical systems. This paper studies a one-dimensional mixed Klein--Gordon/Fermi--Pasta--Ulam diatomic chain using the expanded rotating plane-wave approximation and numerical calculations to determine the effect of cubic potentials on the symmetry properties of discrete breathers in this system. The results will be very useful to researchers in the field of numerical calculations on discrete breathers.
Keywords:  one-dimensional mixed Klein--Gordon/Fermi--Pasta--Ulam diatomic chain      discrete breathers      expanded rotating plane wave approximation      symmetry  
Received:  20 May 2009      Accepted manuscript online: 
PACS:  31.10.+z (Theory of electronic structure, electronic transitions, and chemical binding)  
  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10574011) and the Foundation for Innovative Research Groups Foundation of Beijing Normal University.

Cite this article: 

Zhou Qian(周倩), LÜ Bin-Bin(吕彬彬), and Tian Qiang(田强) The effects of cubic potentials on discrete breathers in a mixed Klein-Gordon /Fermi-Pasta-Ulam chain 2010 Chin. Phys. B 19 066301

[1] Flach S and Gorbach A V 2008 Phys. Rep . 467 1
[2] Flach S and Willis C R 1998 Phys. Rep . 295 182
[3] Joyeux M, Grebenshchikov S Y, Bredenbeck J, Schinke R and Farantos S C 2005 Adv. Chem. Phys . 130 267
[4] English L Q, Sato M and Sievers A J 2001 J. Appl. Phys . 89 6707
[5] Binder P, Abraimov D, Ustinov A V, Flach S and Zolotaryuk Y 2000 Phys. Rev. Lett . 84 745
[6] Anker Th, Albiez M, Gati R, Hunsmann S, Trombettoni A and Oberthaler M K 2005 Phys. Rev. Lett. 94 020403
[7] Wang S E and Yang D S 2006 Commun. Theor. Phys. 46 233
[8] Xie A, van der Meer L, Hoff W and Austin R H 2000 Phys. Rev. Lett. 84 5435
[9] Tsironis G P and Aubry S 1996 Phys. Rev. Lett . 77 5225
[10] Aubry S 2006 Physica D 216 1
[11] Flach S 2004 Energy Localization and Transfer (Singapore: World Scientific)
[12] Johansson M 2006 Physica D 216 62
[13] Franchini A, Bortolani V and Wallis R F 2002 J. Phys.: Condens. Matter 14 145
[14] Zhou Q, L\"u B B and Tian Q 2009 Acta Phys. Sin . 58 412 (in Chinese)
[15] Maniadis P, Zolotaryuk A V and Tsironis G P 2003 Phys. Rev . E 67 046612
[16] Flach S 1994 Phys. Rev . E 50 3134
[17] Li M S and Tian Q 2007 Acta Phys. Sin . 56 1041 (in Chinese)
[18] Xu Q and Tian Q 2009 Chin. Phys . B 18 2469
[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] Conformable fractional heat equation with fractional translation symmetry in both time and space
W S Chung, A Gungor, J Kříž, B C Lütfüoǧlu, and H Hassanabadi. Chin. Phys. B, 2023, 32(4): 040202.
[3] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[4] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[5] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[6] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[7] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[8] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[9] Conservation of the particle-hole symmetry in the pseudogap state in optimally-doped Bi2Sr2CuO6+δ superconductor
Hongtao Yan(闫宏涛), Qiang Gao(高强), Chunyao Song(宋春尧), Chaohui Yin(殷超辉), Yiwen Chen(陈逸雯), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), Guodong Liu(刘国东), Lin Zhao(赵林), Zuyan Xu(许祖彦), and X. J. Zhou(周兴江). Chin. Phys. B, 2022, 31(8): 087401.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[12] Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Chin. Phys. B, 2022, 31(6): 060301.
[13] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[14] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[15] High-energy x-ray diffraction study on phase transition asymmetry of plastic crystal neopentylglycol
Zhe Zhang(张哲), Yan-Na Chen(陈艳娜), Ji Qi(齐迹), Zhao Zhang(张召), Koji Ohara, Osami Sakata, Zhi-Dong Zhang(张志东), and Bing Li(李昺). Chin. Phys. B, 2022, 31(3): 036802.
No Suggested Reading articles found!