Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 044204    DOI: 10.1088/1674-1056/19/4/044204
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Decoherence-immune generation of highly entangled states for two atoms

Zheng Shi-Biao(郑仕标)
Department of Physics and State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002, China
Abstract  This paper proposes a decoherence-immune scheme for generating highly entangled states for two atoms trapped in a cavity. The scheme is based on two resonant atom-cavity interactions. Conditional upon the detection of no photon, the two atoms may exchange an excitation via the first resonant interaction, which leads to entanglement. Due to the loss of the excitation, the two atoms are in a mixed entangled state. With the help of an auxiliary ground state not coupled to the cavity mode, the state related to the excitation loss is eliminated by the detection of a photon resulting from the second resonant interaction. Thus, the fidelity of entanglement is almost not affected by the decoherence.
Keywords:  entangled state      resonant interaction      auxiliary ground state  
Received:  28 December 2008      Revised:  12 May 2009      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  37.10.De (Atom cooling methods)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by funds from the State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University.

Cite this article: 

Zheng Shi-Biao(郑仕标) Decoherence-immune generation of highly entangled states for two atoms 2010 Chin. Phys. B 19 044204

[1] Bell J S 1965 Physics 1 195
[2] Ekert A K 1991 Phys. Rev. Lett.67 661
[3] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W 1993 Phys. Rev. Lett.70 1895
[4] Cirac J I and Zoller P 1994 Phys. Rev. A 50 R2799
[5] Zheng S B and Guo G C 2000 Phys. Rev. Lett.85 2392
[6] Zhang J 2008 Chin. Phys. B 17 1674
[7] Hagley E, Maitre X, Nogues G, Wunderlich C, Brune M, Raimond J M and Haroche S 1997 Phys. Rev. Lett.79 1
[8] Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M, Raimond J M and Haroche S 2000 Science 288 2024
[9] Plenio M B, Huelga S F, Beige A and Knight P L 1999 Phys. Rev. A 59 2468
[10] Hong J and Lee L W 2002 Phys. Rev. Lett.89 237901
[11] Wootters W K 1998 Phys. Rev. Lett.80 2245
[12] Mckeever J, Buck J R, Boozer A D and Kimble H J 2004 quant-ph/0403121
[13] Boca A, Miller R, Birnbaum K M, Boozer A D, Mckeever J and Kimble H J 2004 quant-ph/0410164
[14] Keller M, Lange B, Hayasaka K, Lange W and Walther H 2004 New J. Phys. 6 95
[15] Boozer A D, Boca A, Northup T E and Kimble H J 2006 quant-ph/0606104
[1] Quantum multicast schemes of different quantum states via non-maximally entangled channels with multiparty involvement
Yan Yu(于妍), Nan Zhao(赵楠), Chang-Xing Pei(裴昌幸), and Wei Li(李玮). Chin. Phys. B, 2021, 30(9): 090302.
[2] Universal quantum circuit evaluation on encrypted data using probabilistic quantum homomorphic encryption scheme
Jing-Wen Zhang(张静文), Xiu-Bo Chen(陈秀波), Gang Xu(徐刚), and Yi-Xian Yang(杨义先). Chin. Phys. B, 2021, 30(7): 070309.
[3] Optical complex integration-transform for deriving complex fractional squeezing operator
Ke Zhang(张科), Cheng-Yu Fan(范承玉), Hong-Yi Fan(范洪义). Chin. Phys. B, 2020, 29(3): 030306.
[4] Finite-dimensional pair coherent state engendered via the nonlinear Bose operator realization and its Wigner phase-space distributions
Jianming Liu(刘建明), Xiangguo Meng(孟祥国). Chin. Phys. B, 2019, 28(12): 124206.
[5] Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
Ji-Suo Wang(王继锁), Xiang-Guo Meng(孟祥国), Hong-Yi Fan(范洪义). Chin. Phys. B, 2019, 28(10): 100301.
[6] Direct measurement of the concurrence of hybrid entangled state based on parity check measurements
Man Zhang(张曼), Lan Zhou(周澜), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2019, 28(1): 010301.
[7] Fractional squeezing-Hankel transform based on the induced entangled state representations
Cui-Hong Lv(吕翠红), Su-Qing Zhang(张苏青), Wen Xu(许雯). Chin. Phys. B, 2018, 27(9): 094206.
[8] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[9] Generation of entangled TEM01 modes withperiodically poled KTiOPO4 crystal
Rong-Guo Yang(杨荣国), Jing-jing Wang(王晶静), Jing Zhang(张静), Heng-Xin Sun(孙恒信). Chin. Phys. B, 2016, 25(7): 074208.
[10] Anonymous voting for multi-dimensional CV quantum system
Rong-Hua Shi(施荣华), Yi Xiao(肖伊), Jin-Jing Shi(石金晶), Ying Guo(郭迎), Moon-Ho Lee. Chin. Phys. B, 2016, 25(6): 060301.
[11] Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation
Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁), Hong-Yi Fan(范洪义), Cheng-Wei Xia(夏承魏). Chin. Phys. B, 2016, 25(4): 040302.
[12] Deformed photon-added entangled squeezed vacuum and one-photon states: Entanglement, polarization, and nonclassical properties
A Karimi, M K Tavassoly. Chin. Phys. B, 2016, 25(4): 040303.
[13] Hybrid entanglement concentration assisted with single coherent state
Rui Guo(郭锐), Lan Zhou(周澜), Shi-Pu Gu(顾世浦),Xing-Fu Wang(王兴福), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2016, 25(3): 030302.
[14] On the correspondence between three nodes W states in quantum network theory and the oriented links in knot theory
Gu Zhi-Yu (顾之雨), Qian Shang-Wu (钱尚武). Chin. Phys. B, 2015, 24(4): 040301.
[15] Quantum communication for satellite-to-ground networks with partially entangled states
Chen Na (陈娜), Quan Dong-Xiao (权东晓), Pei Chang-Xing (裴昌幸), Yang-Hong (杨宏). Chin. Phys. B, 2015, 24(2): 020304.
No Suggested Reading articles found!