Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 037104    DOI: 10.1088/1674-1056/19/3/037104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic transport properties of an (8,0) carbon/boron nitride nanotube heterojunction

Liu Hong-Xia(刘红霞)a)†, Zhang He-Ming(张鹤鸣) a), Song Jiu-Xu(宋久旭)a), and Zhang Zhi-Yong(张志勇) b)
a Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China; b Information Science and Technology Institution, Northwest University, Xi'an 710069, China
Abstract  The structure of a heterojunction made up of an (8, 0) carbon nanotube and an (8, 0) boron nitride nanotube is achieved through geometry optimization implemented in the CASTEP package. Based on the optimized geometry, the model of the heterojunction is established. Its transport properties are investigated by combining the nonequilibrium Green's function with density functional theory. Results show that both the lowest unoccupied molecular orbital and the highest occupied molecular orbital mainly locate on the carbon nanotube section. In the current--voltage characteristic of the heterojunction, a rectification feature is revealed.
Keywords:  nanotube heterojunction      nonequilibrium Green's function      transport properties  
Received:  15 March 2009      Revised:  30 September 2009      Accepted manuscript online: 
PACS:  73.63.Fg (Nanotubes)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.40.Ei (Rectification)  
Fund: Project supported by the Chinese Defence Advance Research Program of Science and Technology, China (Grant No.~9140A08060407DZ0103).

Cite this article: 

Liu Hong-Xia(刘红霞), Zhang He-Ming(张鹤鸣), Song Jiu-Xu(宋久旭), and Zhang Zhi-Yong(张志勇) Electronic transport properties of an (8,0) carbon/boron nitride nanotube heterojunction 2010 Chin. Phys. B 19 037104

[1] Iijima S 1991 Nature 354 56
[2] Huczko A, Bystrzejewski M, Lange H, Fabianowska A, Cudzilo S, Panas Aand Szala M 2005 J. Phys. Chem. B 109 16244
[3] Lourie O R, Jones C R, Bartlett B M, Gibbons P C, Ruoff R S and Buhro WE 2000 Chem. Mater. 12 1808
[4] Ciuparu D, Klie R F, Zhu Y M and Pfefferle L 2004 J. Phys. Chem. B 108 3967
[5] Bechelany M, Bernard S, Brioude A, Cornu D, Stadelmann P, Charcosset C,Fiaty K and Miele P 2007 J. Phys. Chem. C 111 13378
[6] Moradian R, Azadi S and Farahani S V 2008 Phys. Lett. A 372 6935
[7] Chai Y, Zhou X L, Li P J, Zhang W J, Zhang Q F and Wu J L 2005 Nanotechnology 16 2134
[8] Li Z Y and Kosov D S 2006 J. Phys. Chem. B 110 9893
[9] Chen J Z, Zhang J and Han R S 2008 Chin. Phys. B 17 2208
[1] Niu X M and Qi H Y 2008 Acta Phys. Sin. 57 6926 (in Chinese)
[11] Long M Q, Chen K Q, Wang L L and Zou B S 2007 Appl. Phys. Lett.91 233512
[12] Li X F, Chen K Q, Wang L L, Long M Q and Zou B S 2007 Appl. Phys. Lett. 91 133511
[13] Bai P, Li E, Lam K T, Kurniawan O and Koh W S 2008 Nanotechnology 19 115203
[14] Tzolov M, Chang B, Yin A, Straus D, Xu J M and Brown G 2004 Phys.Rev. Lett.92 075505
[15] Thesing L A, Piquini P and Kar T 2006 Nanotechnology 17 1637
[16] Wei J W, Hu H F, Zeng H, Zhou Z P, Yang W W and Peng P 2008 Phys. E40 462
[17] Pan H, Feng Y P and Lin J Y 2006 Phys. Rev. B 73 035420
[18] Song C, Xia Y Y, Zhao M W, Liu X D, Li F and Huang B D2005 Chem. Phys. Lett.415 183
[19] Zhang J, Loh K P, Yang S W and Wu P 2005 Appl. Phys. Lett. 87 243
[20] Wang Z C, Kadohira T, Tada T and Watanabe S 2007 Nano. Lett. 7 2688
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Device design based on the covalent homocouplingof porphine molecules
Minghui Qu(曲明慧), Jiayi He(贺家怡), Kexin Liu(刘可心), Liemao Cao(曹烈茂), Yipeng Zhao(赵宜鹏), Jing Zeng(曾晶), and Guanghui Zhou(周光辉). Chin. Phys. B, 2021, 30(9): 098504.
[3] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[4] Transport properties of Tl2Ba2CaCu2O8 microbridges on a low-angle step substrate
Sheng-Hui Zhao(赵生辉), Wang-Hao Tian(田王昊), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Lu Ji(季鲁), Ming He(何明), and Hua-Bing Wang(王华兵). Chin. Phys. B, 2021, 30(6): 060308.
[5] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[6] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[7] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[8] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[9] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[10] Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles
Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2020, 29(3): 037304.
[11] Growth and transport properties of topological insulator Bi2Se3 thin film on a ferromagnetic insulating substrate
Shanna Zhu(朱珊娜), Gang Shi(史刚), Peng Zhao(赵鹏), Dechao Meng(孟德超), Genhao Liang(梁根豪), Xiaofang Zhai(翟晓芳), Yalin Lu(陆亚林), Yongqing Li(李永庆), Lan Chen(陈岚), Kehui Wu(吴克辉). Chin. Phys. B, 2018, 27(7): 076801.
[12] Non-monotonic dependence of current upon i-width in silicon p-i-n diodes
Zheng-Peng Pang(庞正鹏), Xin Wang(王欣), Jian Chen(陈健), Pan Yang(杨盼), Yang Zhang(张洋), Yong-Hui Tian(田永辉), Jian-Hong Yang(杨建红). Chin. Phys. B, 2018, 27(6): 066106.
[13] Multinary diamond-like chalcogenides for promising thermoelectric application
Dan Zhang(张旦), Hong-Chang Bai(白洪昌), Zhi-Liang Li(李志亮), Jiang-Long Wang(王江龙), Guang-Sheng Fu(傅广生), Shu-Fang Wang(王淑芳). Chin. Phys. B, 2018, 27(4): 047206.
[14] Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment
Yu Tang(唐语), Decong Li(李德聪), Zhong Chen(陈钟), Shuping Deng(邓书平), Luqi Sun(孙璐琪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Shukang Deng(邓书康). Chin. Phys. B, 2018, 27(11): 118105.
[15] Transport properties of doped Bi2Se3 and Bi2Te3 topological insulators and heterostructures
Zhen-Hua Wang(王振华), Xuan P A Gao(高翾), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2018, 27(10): 107901.
No Suggested Reading articles found!