ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Tripartite continuous-variable entanglement of NOPA system |
Chao-Ying Zhao(赵超樱)1,2, Cheng-Mei Zhang(张成梅)3 |
1 College of Science, Hangzhou Dianzi University, Hangzhou 310018, China; 2 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China; 3 Nokia Solutions and Networks, Hangzhou 310053, China |
|
|
Abstract We investigate the fundamental limits to the achievable tripartite continuous-variable (CV) entanglement criterion of a generalized V1 criterion. Our numerical simulation results show that the non-degenerate eigenvalues do effect the performances of the estimated minimum variances. From below the threshold to above the threshold, with the increase of the pump parameter, the tripartite CV entanglement gradually disappears. The different off-diagonal elements seriously distort the weights for entanglement. We can obtain a good tripartite CV entanglement by appropriately controlling the values of off-diagonal elements εij.
|
Received: 12 December 2017
Revised: 07 March 2018
Accepted manuscript online:
|
PACS:
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
42.65.Lm
|
(Parametric down conversion and production of entangled photons)
|
|
Fund: Projected supported by the National Natural Science Foundation of China (Grant No. 11504074) and the Science Fund from the State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Shanxi, China (Grant No. KF201601). |
Corresponding Authors:
Chao-Ying Zhao
E-mail: zchy49@hdu.edu.cn
|
Cite this article:
Chao-Ying Zhao(赵超樱), Cheng-Mei Zhang(张成梅) Tripartite continuous-variable entanglement of NOPA system 2018 Chin. Phys. B 27 084204
|
[1] |
Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
|
[2] |
Li X Y, Pan Q, Jing J T, Zhang J, Xie C D and Peng K C 2002 Phys. Rev. Lett. 88 047904
|
[3] |
Silberhorn C, Korolkova N and Leuchs G 2002 Phys. Rev. Lett. 89 167902
|
[4] |
D'Ariano G M and Presti P L 2001 Phys. Rev. Lett. 86 4195
|
[5] |
Jia X J, Su X L, Pan Q, Gao J R, Xie C D and Peng K C 2004 Phys. Rev. Lett. 93 250503
|
[6] |
Su X L, Wang W Z, Wang Y, Jia X J, Xie C D and Peng K C 2009 Europhys. Lett. 87 20005
|
[7] |
Tan A H, Wang Y, Jin X L, Su X L, Jia X J, Zhang J, Xie C D and Peng K C 2008 Phys. Rev. A 78 013828
|
[8] |
Yoshikawa J, Miwa Y, Huck A, Andersen U L, Loock P V and Furusawa A 2008 Phys. Rev. Lett. 101 250501
|
[9] |
Aoki T, Takei N, Yonezawa H, Wakui K, Hiraoka T, Furusawa A and van Loock P 2003 Phys. Rev. Lett. 91 080404
|
[10] |
Jing J, Zhang J, Yan Y, Zhao F, Xie C and Peng K 2003 Phys. Rev. Lett. 90 167903
|
[11] |
Pfister O, Feng S, Jennings G, Pooser R and Xie D R 2004 Phys. Rev. A 70 020302(R)
|
[12] |
Guo J, Zhai Z H and Gao J R 2010 J. Opt. Soc. Am. B 27 518
|
[13] |
Pennarun C, Bradley A S and Olsen M K 2007 Phys. Rev. A 76 063812
|
[14] |
Allevi A, Bondani M, Paris M G A and Andreoni A 2008 Phys. Rev. A 78 063801
|
[15] |
Casagrande F, Lulli A and Paris M G A 2009 Phys. Rev. A 79 022307
|
[16] |
Weinstein Y S 2009 Phys. Rev. A 79 012318
|
[17] |
Wang H L, Zheng Z, Wang Y X and Jing J T 2016 Opt. Express 24 23459
|
[18] |
Wang L, Wang H L, Li S J, Wang Y X and Jing J T 2017 Phys. Rev. A 95 013811
|
[19] |
Wang L, Lv S C and Jing J T 2017 Opt. Express 25 17457
|
[20] |
Zheng Z, Wang H L, Cheng B and Jing J T 2017 Opt. Lett. 42 2754
|
[21] |
Qin Z Z, Cao L M, Wang H L, Marino A M, Zhang W P and Jing J T 2014 Phys. Rev. Lett. 113 023602
|
[22] |
Daems D, Bernard F, Cerf N J and Kolobov M I 2010 J. Opt. Soc. Am. B 27 447
|
[23] |
Lian Y M, Xie C D and Peng K C 2007 New. J. Phys. 9 314
|
[24] |
Yu Y B, Xie Z D, Yu X Q, Li H X, Xu P, Yao H M and Zhu S N 2006 Phys. Rev. A 74 042332
|
[25] |
Ferraro A, Paris M G A, Bondani M, Allevi A, Puddu E and Andreoni A 2004 J. Opt. Soc. Am. B 21 1241
|
[26] |
Olsen M K and Bradley A S 2006 Phys. Rev. A 74 063809
|
[27] |
Rodionov A V and Chirkin A S 2004 JETP Lett. 79 253
|
[28] |
Lv S C and Jing J T 2017 Phys. Rev. A 96 043873
|
[29] |
Zhao C Y, Tan W H, Xu J R and Ge F 2011 J. Opt. Soc. Am. B 28 1067
|
[30] |
Zhao C Y 2017 J. Mod. Opt. 64 52
|
[31] |
Zhao C Y 2017 J. Mod. Opt. 64 150
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|