Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 127302    DOI: 10.1088/1674-1056/19/12/127302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of a one-dimensional surface defect on designer surface plasmon polaritons

Ding Lan(丁岚), Liu Jin-Song(刘劲松), and Wang Ke-Jia(王可嘉)
Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  By using a finite difference time domain (FDTD) method, the effects of a one-dimensional (1D) surface defect on designer surface plasmon polaritons (designer SPPs) supported by a 1D metallic grating in THz domain are investigated. When the size of the defect is in a special range which is not too large, the designer SPPs reflected and scattered by the defect are weak enough to be neglected. The defect only induces a disturbance in the energy distribution of the designer SPP supported by the whole defect grating. If the defect size exceeds the said range, the reflecting and scattering are dominant in the influences of the defect on designer SPPs. Our analysis opens opportunities to control and direct designer SPPs by introducing a 1D defect, especially in low frequency domain.
Keywords:  surface states      surface plasmons      electromagnetic theory      grating  
Received:  06 February 2010      Revised:  06 April 2010      Accepted manuscript online: 
PACS:  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974063), the Research Foundation of Wuhan National Laboratory (Grant No. P080008), and the National Basic Research Program of China (Grant No. 2007CB310403).

Cite this article: 

Ding Lan(丁岚), Liu Jin-Song(刘劲松), and Wang Ke-Jia(王可嘉) Effects of a one-dimensional surface defect on designer surface plasmon polaritons 2010 Chin. Phys. B 19 127302

[1] Agranovich V M and Mills D L 1982 Surface Polaritons (Amsterdam: North-Holland)
[2] Raether H 1988 Surface Polaritons on Smooth and Rough Surfaces and on Gratings (Berlin: Springer)
[3] de León-Pérez F, Brucoli G, Garc'hia-Vidal F J and Mart'hin-Moreno L 2008 New J. Phys. 10 1
[4] Pincemin F, Maradudin A A, Boardman A D and Greffet J J 1994 Phys. Rev. B 50 15261
[5] Sá nchez-Gil J A 1998 Appl. Phys. Lett. 73 3509
[6] S'anchez-Gil J A and Maradudin A A 1999 Phys. Rev. B 60 8359
[7] Sánchez-Gil J A and Maradudin A A 2004 Opt. Express 12 883
[8] Haitao Liu, Philippe Lalanne, Xiaoyan Yang and Jean-Paul Hugonin 2008 IEEE Journal of Selected Topics in Quantum Electronics 14 1522
[9] Wang L C, Deng L, Cui N, Niu Y P and Gong S Q 2010 Chin. Phys. B 19 017303
[10] Rothenhäausler B and Knoll W 1987 Appl. Phys. Lett. 51 783
[11] Berger C E H, Koioyman R P H and Greve J 1999 Opt. Commun. 167 183
[12] Smolyaninov I I, Mazzoni D L, Mait J and Davis C C 1997 Phys. Rev. B 56 1601
[13] Pendry J B, Martin-Moreno L and Garcia-Vidal F J 2004 Science 305 847
[14] Garcia-Vidal F J, Martin-Moreno L and Pendry J B 2005 J. Opt. A 7 S97
[15] Hibbins A P, Evans B R and Sambles J R 2005 Science 308 670
[16] Tanaka M, Miyamaru F, Hangyo M, Tanaka T, Akazawa M and Sano E 2005 Opt. Lett. 30 1210
[17] Williams C R, Andrews S R, Maier S A, Fern Andez-Dom Anguez, Mart An-Moreno L and Garcia-Vidal F J 2008 Nature Photonics 2 175
[18] Qiaoqiang Gan, Zhan Fu, Ding Yujie and Bartoli Filbert J 2008 Phys. Rev. Lett. 100 256803
[19] Liu J S, Ding L, Wang K J and Yao J Q 2009 Opt. Express 17 12714
[20] Taflove A and Hagness S C 2000 Computational Electrodynamics: The Finite-Difference Time-Domain Method 2nd. edn (Boston: Artech House)
[21] Zhang Fu, Qiaoqiang Gan, Ding Yujie and Bartoli Filbert J 2008 IEEE Journal of Selected Topics in Quantum Electronics 14 486
[22] Weiner J 2009 Rep. Prog. Phys. 72 1
[23] Bora Ung and Yunlong Sheng 2007 Opt. Express 15 1182
[1] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[2] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[3] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[4] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[5] X-ray phase-sensitive microscope imaging with a grating interferometer: Theory and simulation
Jiecheng Yang(杨杰成), Peiping Zhu(朱佩平), Dong Liang(梁栋), Hairong Zheng(郑海荣), and Yongshuai Ge(葛永帅). Chin. Phys. B, 2022, 31(9): 098702.
[6] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[7] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[8] Analysis of period and visibility of dual phase grating interferometer
Jun Yang(杨君), Jian-Heng Huang(黄建衡), Yao-Hu Lei(雷耀虎), Jing-Biao Zheng(郑景标), Yu-Zheng Shan(单雨征), Da-Yu Guo(郭大育), and Jin-Chuan Guo(郭金川). Chin. Phys. B, 2022, 31(5): 058701.
[9] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[10] Smith-Purcell radiation improved by multi-grating structure
Jing Shu(舒靖), Ping Zhang(张平), Man Liang(梁满), Sheng-Peng Yang(杨生鹏), Shao-Meng Wang(王少萌), and Yu-Bin Gong(宫玉彬). Chin. Phys. B, 2022, 31(4): 044103.
[11] High-sensitivity Bloch surface wave sensor with Fano resonance in grating-coupled multilayer structures
Daohan Ge(葛道晗), Yujie Zhou(周宇杰), Mengcheng Lv(吕梦成), Jiakang Shi(石家康), Abubakar A. Babangida, Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(4): 044102.
[12] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[13] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[14] Coupling characteristics of laterally coupled gratings with slots
Kun Tian(田锟), Yonggang Zou(邹永刚), Linlin Shi(石琳琳), He Zhang(张贺), Yingtian Xu(徐英添), Jie Fan(范杰), Hui Tang(唐慧), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(11): 114208.
[15] High-efficiency asymmetric diffraction based on PT-antisymmetry in quantum dot molecules
Guangling Cheng(程广玲), Yongsheng Hu(胡永升), Wenxue Zhong(钟文学), and Aixi Chen(陈爱喜). Chin. Phys. B, 2022, 31(1): 014202.
No Suggested Reading articles found!