Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 124201    DOI: 10.1088/1674-1056/19/12/124201
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Focusing performance of small f-number metallic lens with depth-modulated slits

Gao Yang(高扬), Zhang Xue-Ru(张学如), Wang Yu-Xiao(王玉晓), Song Ying-Lin(宋瑛林), and Liu Shu-Tian(刘树田)
Department of Physics, Harbin Institute of Technology, Harbin 150001, China
Abstract  This paper studies a small f-number metallic lens with depth-modulated slits. Slits filled with dielectric between silver plates are designed to produce desired optical phase retardations based on the particular propagation properties of surface plasmon polaritons in nanostructures. Numerical simulation of this structure is performed through the finite-difference time-domain method. Different from the conventional dielectric lens, the metallic lens can be used as a pure phase element without energy loss brought by the light refraction at curved surfaces and total internal reflection. The focusing performance is consequently improved, with larger diffraction efficiency than that of the same shaped dielectric lens.
Keywords:  surface plasmon polaritons      subwavelength structures      finite-difference time-domain  
Received:  29 March 2010      Revised:  01 May 2010      Accepted manuscript online: 
PACS:  02.70.Bf (Finite-difference methods)  
  42.79.Bh (Lenses, prisms and mirrors)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2006CB302901) and the Foundation of the Ministry of Science and Technology of China for the International Collaboration on Scientific Research (Grant No. 2009DFA50620).

Cite this article: 

Gao Yang(高扬), Zhang Xue-Ru(张学如), Wang Yu-Xiao(王玉晓), Song Ying-Lin(宋瑛林), and Liu Shu-Tian(刘树田) Focusing performance of small f-number metallic lens with depth-modulated slits 2010 Chin. Phys. B 19 124201

[1] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[2] Fang N, Lee H, Sun C and Zhang X 2005 Science 308 534
[3] Melville D O S and Blaikie R J 2005 Opt. Express 13 2127
[4] Jacob Z, Alekseyev L V and Narimanov E 2006 Opt. Express 14 8247
[5] Salandrino A and Engheta N 2006 Phys. Rev. B 74 075103
[6] Smolyaninov I I, Hung Y J and Davis C C 2007 Science 315 1699
[7] Liu Z, Lee H, Xiong Y, Sun C and Zhang X 2007 Science 315 1686
[8] Kim H, Hahn J and Lee B 2008 Opt. Express 16 3049
[9] Wood B, Pendry J B and Tsai D P 2006 Phys. Rev. B 74 115116
[10] Gorden R 2009 Phys. Rev. Lett. 102 207402
[11] Shi H, Du C and Luo X 2007 Appl. Phys. Lett. 91 093111
[12] Jung Y J, Park D, Koo S, Yu S and Park N 2009 Opt. Express 17 397
[13] Shi H, Wang C, Du C, Luo X, Dong X and Gao H 2005 Opt. Express 13 6815
[14] Sun Z and Kim H K 2004 Appl. Phys. Lett. 85 642
[15] Wang L, Deng L, Cui N, Niu Y P and Gong S Q 2010 Chin. Phys. B 19 017303
[16] Sun M, Liu R, Li Z, Cheng B, Zhang D, Yang H and Jin A 2006 Chin. Phys. 15 1591
[17] Xue W, Guo Y and Zhang W 2009 Chin. Phys. B 18 2529
[18] Herzig H P 1996 Micro-optics: Elements, System and Application (London: Taylor & Francis)
[19] Raether H 1988 Surface Plasmons on Smooth and Rough Surface and on Gratings (Heidelber: Springer)
[20] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[21] Gordon R and Brolo A G 2005 Opt. Express 13 1933
[22] Johnson P B and Christy R W 1972 Phys. Rev. B 12 4370
[23] Feigenbaum E and Orenstein M 2007 J. Lightwave Technol. 25 2547
[24] Matsushima A, Nakamura Y and Tomino S 2005 Prog. Electromagn. Res. 54 245
[25] Born M and Wolf E 1999 Principles of Optics 7th edn. (Cambridge: Cambridge University Press)
[26] Taflove A and Hagness S C 2000 Computational Electrodynamics: The Finite-Difference Time-Domain Method 2nd edn. (Boston: Artech House)
[1] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[2] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[3] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[4] Lattice plasmon mode excitation via near-field coupling
Yun Lin(林蕴), Shuo Shen(申烁), Xiang Gao(高祥), and Liancheng Wang(汪炼成). Chin. Phys. B, 2022, 31(1): 014214.
[5] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[6] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[7] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[8] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[9] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[10] Design and verification of a broadband highly-efficient plasmonic circulator
Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏). Chin. Phys. B, 2021, 30(3): 034102.
[11] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[12] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[13] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[14] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[15] Oxide-aperture-dependent output characteristics of circularly symmetric VCSEL structure
Wen-Yuan Liao(廖文渊), Jian Li(李健), Chuan-Chuan Li(李川川), Xiao-Feng Guo(郭小峰), Wen-Tao Guo(郭文涛), Wei-Hua Liu(刘维华), Yang-Jie Zhang(张杨杰), Xin Wei(韦欣), Man-Qing Tan(谭满清). Chin. Phys. B, 2020, 29(2): 024201.
No Suggested Reading articles found!