Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 124101    DOI: 10.1088/1674-1056/19/12/124101
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Wave growth rate in a cylindrical metal waveguide with ion-channel guiding of a relativistic electron beam

Li Hai-Rong(李海容)a)b), Tang Chang-Jian(唐昌建)a), and Wang Shun-Jin(王顺金)a)
a School of Physics Science and Technology, Sichuan University, Chengdu 610064, China; b College of Science, University of Science and Technology Liaoning, Anshan 114051, China
Abstract  This paper addresses the formulae and numerical issues related to the possibility that fast wave may be grown when a relativistic electron beam through an ion channel in a cylindrical metal waveguide. To derive the dispersion equations of the beam–wave interaction, it solves relativistic Lorentz equation and Maxwell's equations for appropriate boundary conditions. It has been found in this waveguide structure that the TM0m modes are the rational operating modes of coupling between the electromagnetic modes and the betatron modes. The interaction of the dispersion curves of the electromagnetic TM0m modes and the upper betatron modes is studied. The growth rates of the wave are obtained, and the effects of the beam radius, the beam energy, the plasma frequency, and the beam plasma frequency on the wave growth rate are numerically calculated and discussed.
Keywords:  relativistic electron beam      plasma      ion channel      dispersion relations      wave growth rate  
Received:  24 March 2010      Revised:  27 April 2010      Accepted manuscript online: 
PACS:  41.75.Ht (Relativistic electron and positron beams)  
  52.40.Fd (Plasma interactions with antennas; plasma-filled waveguides)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant Nos. 10775100 and 90503008), the Science Foundation of China Academy of Engineering Physics (Grant No. 10576019), and the Fund of Theoretical Nuclear Physics Center, National Laboratory of Heavy Ion Accelerator Facility of Lanzhou.

Cite this article: 

Li Hai-Rong(李海容), Tang Chang-Jian(唐昌建), and Wang Shun-Jin(王顺金) Wave growth rate in a cylindrical metal waveguide with ion-channel guiding of a relativistic electron beam 2010 Chin. Phys. B 19 124101

[1] Whittum D H, Sessler A M and Dawson J M 1990 Phys. Rev. Lett.64 2511
[2] Kupershmidt H and Ron A 1994 IEEE Trans. Plasma Sci. 22 674
[3] Whittum D H 1992 Phys. Fluids B 4 730
[4] Whittum D H, Sharp W M, Yu S S, Lampe M and Joyce G 1991 Phys. Rev. Lett. 67 991
[5] Esarey E, Sprangle P, Krall J and Ting A 1996 IEEE Trans. Plasma Sci. 24 252
[6] Krall J and Joyce G 1995 Phys. Plasmas 2 1326
[7] Mehdian H, Esmelzadeh M and Willett J E 2001 Phys. Plasmas 8 3776
[8] Esmaeilzadeh M, Mehdian H and Willett J E 2002 Phys. Rev. E 65 016501
[9] Mehdian H and Raghavi A 2007 Plasma Phys. Control Fusion 49 69
[10] Mehdian H, Hasanbeigi A and Jafari S 2008 Phys. Plasmas 15 073103
[11] Chen K R, Dawson J M, Lin A T and Katsouleas T 1991 Phys. Fluids B 3 1270
[12] Wang S Q, Clayton C E, Blue B E, Dodd E S, Marsh K A, Mori W B, Joshi C, Lee S, Muggli P, Katsouleas T, Decker F J, Hogan M J, Iverson R H, Raimondi P, Walz D, Siemann R and Assmann R 2002 Phys. Rev. Lett. 88 135004
[13] Esarey E, Shadwick B A, Catravas P and Leemans W P 2002 Phys. Rev. E 65 056505
[14] Liu C S, Tripathi V K and Kumar N 2007 Plasma Phys. Control Fusion 49 325
[15] Xie H Q and Liu P K 2007 Chin. Phys. 16 766
[16] Li W, Gao H, Gong M L and Liu S G 2004 Chin. Phys.13 1296
[17] Kostyukov I, Kiselev S and Pukhov A 2003 Phys. Plasmas 10 4818
[18] Rousse A, Phuoc K T, Shah R, Pukhov A, Lefebvre E, Malka V, Kiselev S, Burgy F, Rousseau J, Umstadter D and Hulin D 2004 Phys. Rev. Lett. 93 135005
[19] Rouhani M H and Mareghechi B 2006 Phys. Plasmas 13 083101
[20] Wu J Q 1997 Phys. Plasmas 4 3064
[21] Shokri B, Ghomi H and Latifi H 2000 Phys. Plasmas 7 2671
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[4] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[5] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[6] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[7] Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
Yong-Xin Liu(刘永新), Quan-Zhi Zhang(张权治), Kai Zhao(赵凯), Yu-Ru Zhang(张钰如), Fei Gao(高飞),Yuan-Hong Song(宋远红), and You-Nian Wang(王友年). Chin. Phys. B, 2022, 31(8): 085202.
[8] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[9] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[10] Interaction between plasma and electromagnetic field in ion source of 10 cm ECR ion thruster
Hao Mou(牟浩), Yi-Zhou Jin(金逸舟), Juan Yang(杨涓), Xu Xia(夏旭), and Yu-Liang Fu(付瑜亮). Chin. Phys. B, 2022, 31(7): 075202.
[11] Plasma-wave interaction in helicon plasmas near the lower hybrid frequency
Yide Zhao(赵以德), Jinwei Bai(白进纬), Yong Cao(曹勇), Siyu Wu(吴思宇), Eduardo Ahedo, Mario Merino, and Bin Tian(田滨). Chin. Phys. B, 2022, 31(7): 075203.
[12] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[13] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[14] Ion-focused propagation of a relativistic electron beam in the self-generated plasma in atmosphere
Jian-Hong Hao(郝建红), Bi-Xi Xue(薛碧曦), Qiang Zhao(赵强), Fang Zhang(张芳), Jie-Qing Fan(范杰清), and Zhi-Wei Dong(董志伟). Chin. Phys. B, 2022, 31(6): 064101.
[15] Quantitative simulations of ratchet potential in a dusty plasma ratchet
Shuo Wang(王硕), Ning Zhang(张宁), Shun-Xin Zhang(张顺欣), Miao Tian(田淼), Ya-Wen Cai(蔡雅文), Wei-Li Fan(范伟丽), Fu-Cheng Liu(刘富成), and Ya-Feng He(贺亚峰). Chin. Phys. B, 2022, 31(6): 065202.
No Suggested Reading articles found!