Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 117402    DOI: 10.1088/1674-1056/19/11/117402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Josephson junction of two-species Bose–Einstein condensates in a high-finesse optical cavity

Wang Bin(王彬)a), Tan Lei(谭磊)a)b), Lü Chun-Hai(吕纯海)a), and Tan Wen-Ting(谭文婷)a)
a Institute of Theoretical Physics, Lanzhou University, Lanzhou 730070, China; b Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education,Lanzhou University, Lanzhou 730000, China
Abstract  The mean-field dynamics of undistinguishable two-species Bose Josephson junction coupled to a single mode high-finesse optical cavity is investigated. From the Hamiltonian, the phase portrait and the stationary points are given. It is shown that the role of the interspecies interaction equals the intraspecies interaction under suitable conditions. As the interspecies interaction increases, the trapped atoms will start tunneling between the two wells unnaturally for some special cases.
Keywords:  Josephson effect      cavity      Bose–Einstein condensate  
Received:  21 December 2009      Revised:  30 May 2010      Accepted manuscript online: 
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10704031), the National Science Foundation for Fostering Talents in Basic Research of the National Natural Science Foundation of China (Grant No. J0630313), the Fundamental Research Fund for Physics and Mathematics of Lanzhou University (Grant No. Lzu05001), and the Natural Science Foundation of Gansu Province, China (Grant No. 3ZS061-A25-035).

Cite this article: 

Wang Bin(王彬), Tan Lei(谭磊), Lü Chun-Hai(吕纯海), and Tan Wen-Ting(谭文婷) Josephson junction of two-species Bose–Einstein condensates in a high-finesse optical cavity 2010 Chin. Phys. B 19 117402

[1] Levy S, Lahoud E, Shomroni I and Steinhauer J 2007 Nature (London) 449 579
[2] Hofferberth S, Lesanovsky I, Fischer B, Verdu J and Schmiedmayer J 2006 Nat. Phys. 2 710
[3] Schumm T, Hofferberth S, Andersson L M, Wildermuth S, Groth S, Bar-Joseph I, Schmiedmayer J and Kr"uger P 2005 Nat. Phys. 1 57
[4] Albiez M, Gati R, F"olling J, Hunsmann S, Cristiani M and Oberthaler M K 2005 Phys. Rev. Lett. 95 010402
[5] Zhou L, Kong L B and Zhan M S 2008 Chin. Phys. B 17 1601
[6] Smerzi A, Fantoni S, Giovanazzi S and Shenoy S R 1997 Phys. Rev. Lett. 79 4950
[7] Raghavan S, Smerzi A, Fantoni S and Shenoy S R 1999 Phys. Rev. A 59 620
[8] Gati R and Oberthaler M K 2007 J. Phys. B: At. Mol. Opt. Phys. 40 R61--89
[9] Menotti C, Anglin J R, Cirac J I and Zoller P 2001 Phys. Rev. A 63 023601
[10] Luxat D L and Griffin A 2001 Phys. Rev. A 65 043618
[11] Milburm G J, Corney J, Wright E M and Walls D F 1997 Phys. Rev. A 55 4318
[12] Xu X Q, Lu L H and Li Y Q 2008 Phys. Rev. A 78 043609
[13] Ng H T, Law C K and Leung P T 2003 Phys. Rev. A 68 013604
[14] Mazzarella G, Moratti M, Salasnich L, Salerno M and Toigo F 2009 J. Phys. B: At. Mol. Opt. Phys. 42 125301
[15] Satija I I, Balakrishnan R, Naudus P, Heward J, Edwards M and Clark C W 2009 Phys. Rev. A 79 033616
[16] Colombe Y, Steinmetz T, Dubios G, Linke F, Hunger D and Reichel J 2000 Nature (London) 450 272
[17] Brennecke F, Donner T, Ritter S, Bourdel T, K"ohl M and Esslinger T 2007 Nature (London) bf450 268
[18] Zhang J M, Liu W M and Zhou D L 2008 Phys. Rev. A 78 043618
[19] Williams J E 2001 Phys. Rev. A 64 013610
[20] Imamoglu A, Lewenstein M and You L 1997 Phys. Rev. Lett. 78 2511
[21] Javanainen J and Ivanov M Y 1999 Phys. Rev. A 60 2351
[22] Maschler C and Ritsch H 2005 Phys. Rev. Lett. 95 260401
[23] Zhang J M, Liu W M and Zhou D L 2008 Phys. Rev. A 77 033620
[24] Haroche S and Brune M 1991 Europhys. Lett. 14 19
[25] Leggett A J 2001 Rev. Mod. Phys. 73 307
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[5] Optomagnonically tunable whispering gallery cavity laser wavelength conversion
Yining Zhu(朱奕宁), Zixu Zhu(朱子虚), Anbang Pei(裴安邦), and Yong-Pan Gao(高永潘). Chin. Phys. B, 2023, 32(2): 024206.
[6] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[7] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[8] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[9] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[10] Design and high-power test of 800-kW UHF klystron for CEPC
Ou-Zheng Xiao(肖欧正), Shigeki Fukuda, Zu-Sheng Zhou(周祖圣), Un-Nisa Zaib, Sheng-Chang Wang(王盛昌), Zhi-Jun Lu(陆志军), Guo-Xi Pei(裴国玺), Munawar Iqbal, and Dong Dong(董东). Chin. Phys. B, 2022, 31(8): 088401.
[11] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[12] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[13] Synchronous detection of multiple optical characteristics of atmospheric aerosol by coupled photoacoustic cavity
Hua-Wei Jin(靳华伟), Ren-Zhi Hu(胡仁志), Pin-Hua Xie(谢品华), and Ping Luo(罗平). Chin. Phys. B, 2022, 31(6): 060703.
[14] Quantum mechanical solution to spectral lineshape in strongly-coupled atom-nanocavity system
Jian Zeng(曾健) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(4): 043202.
[15] Wide dynamic detection range of methane gas based on enhanced cavity absorption spectroscopy
Yu Wang(汪玉), Bo-Kun Ding(丁伯坤), Kun-Yang Wang(王坤阳), Jiao-Xu Mei(梅教旭), Ze-Lin Han(韩泽林), Tu Tan(谈图), and Xiao-Ming Gao(高晓明). Chin. Phys. B, 2022, 31(4): 040705.
No Suggested Reading articles found!