Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 106401    DOI: 10.1088/1674-1056/19/10/106401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Right on time: measuring Kuramoto model coupling from a survey of wrist-watches

Reginald D. Smith(史瑞吉)
Bouchet-Franklin Research Institute, P O Box 10051, Rochester, NY 14610, USA
Abstract  Using a survey of wrist-watch synchronization from a randomly selected group of independent volunteers, we model the system as a Kuramoto-type coupled oscillator network. Based on the phase data both the order parameter and likely size of the coupling are derived and the possibilities for similar research to deduce topology from dynamics are discussed.
Keywords:  coupled oscillators      Kuramoto model      complex networks      synchronization  
Received:  08 January 2010      Revised:  10 May 2010      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  89.75.Hc (Networks and genealogical trees)  

Cite this article: 

Reginald D. Smith(史瑞吉) Right on time: measuring Kuramoto model coupling from a survey of wrist-watches 2010 Chin. Phys. B 19 106401

[1] Strogatz SH 2000 emphPhysica D 143 1
[2] Kuramoto Y 1975 emphInternational Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics ed. Arakai H (New York: Springer) Vol. 39 p. 420
[3] Kuramoto Y 1984 emphChemical Oscillations, Waves and Turbulence (Berlin: Springer)
[4] Kuramoto Y 1984 emphProg. Theor. Phys. Suppl. 79 223
[5] Sakaguchi H and Kuramoto Y 1986 emphProg. Theor. Phys. 76 576
[6] Moreno Y and Pacheco A F 2004 emphEurophys. Lett. 68 603
[7] Arenas A, D'hiaz-Guilera A, Kurths J, Moreno Y and Zhou C 2008 emphPhys. Rep. 469 93
[8] Sakaguchi H 1988 emphProg. Theor. Phys. 79 39
[9] Strogatz S H and Mirollo R E J 1991 emphStat. Phys. 63 613 endfootnotesize
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[4] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[5] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[6] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[7] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[8] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[9] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[10] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[11] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[12] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[13] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[14] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[15] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
No Suggested Reading articles found!