Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 104205    DOI: 10.1088/1674-1056/19/10/104205
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Generalized photon-added coherent state and its quantum statistical properties

Yuan Hong-Chun(袁洪春)a), Xu Xue-Xiang(徐学翔)a)b), and Fan Hong-Yi(范洪义)a)
a Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China; b College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China
Abstract  In this paper, we propose a class of the generalized photon-added coherent states (GPACSs) obtained by repeatedly operating the combination of Bosonic creation and annihilation operatoes on the coherent state. The normalization factor of GPACS is related to Hermite polynomial. We also derive the explicit expressions of its statistical properties such as photocount distribution, Wigner function and tomogram and investigate their behaviour as the photon-added number varies graphically. It is found that GPACS is a kind of nonclassical state since Wigner function exhibits the negativity by increasing the photon-added number.
Keywords:  generalized photon-added coherent state      photocount distribution      Wigner function      tomogram  
Received:  29 January 2010      Revised:  09 June 2010      Accepted manuscript online: 
PACS:  02.10.De (Algebraic structures and number theory)  
  42.50.Ar  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10775097 and 10874174).

Cite this article: 

Yuan Hong-Chun(袁洪春), Xu Xue-Xiang(徐学翔), and Fan Hong-Yi(范洪义) Generalized photon-added coherent state and its quantum statistical properties 2010 Chin. Phys. B 19 104205

[1] Bouwmeester D, Ekert A and Zeilinger A 2000 The Physics of Quantum Information (Berlin: Springer)
[2] Short R and Mandel L 1983 Phys. Rev. Lett. 51 384
[3] Loudon R and Knight P L 1987 J. Mod. Opt. 34 709
[4] Kenfack A and Z˙ yczkowski K 2004 J. Opt. B: Quantum Semiclassical Opt. 6 396
[5] Agarwal G S and Tara K 1991 Phys. Rev. A 43 492
[6] Sivakumar S 1999 J. Phys. A: Math. Gen. 32 3441
[7] Li H M, Yuan H C and Fan H Y 2009 Int. J. Theor. Phys. 48 2849
[8] Zhang J S and Xu J B 2009 Phys. Scr. 79 025008
[9] Hu L Y and Fan H Y 2008 J. Mod. Opt. 55 2011
[10] Meng X G, Wang J S, Liang B L and Li H Q 2008 Chin. Phys. B 17 1791
[11] Dai Q and Jing H 2008 Int. J. Theor. Phys. 47 2716
[12] Duc T M and Noh J 2008 Opt. Commun. 281 2842
[13] Hu L Y and Fan H Y 2009 Phys. Scr. 79 035004
[14] Li S B, Liu J, Zou X B and Guo G C 2008 J. Opt. Soc. Am. B 25 54
[15] Zavatta A, Viciani S and Bellini M 2004 Science 306 660
[16] Zavatta A, Viciani S and Bellini M 2005 Phys. Rev. A 72 023820
[17] Kalamidas D, Gerry C C and Benmoussa A 2008 Phys. Lett. A 372 1937
[18] Li Y, Jing H and Zhan M S 2007 Chin. Phys. 16 1883
[19] Rainville E D 1960 Special Function (New York: MacMillan)
[20] Klauder J R and Skargerstam B S 1985 Coherent States (Singapore: World Scientific)
[21] Kelley P L and Kleiner W H 1964 Phys. Rev. 136 316
[22] Orszag M 2000 Quantum Optics (Berlin: Springer)
[23] Fan H Y and Hu L Y 2008 Opt. Lett. 33 443
[24] Hu L Y and Fan H Y 2008 J. Opt. Soc. Am. B 25 1955
[25] Vogel K and Risken H 1989 Phys. Rev. A 40 2847
[26] Fan H Y and Chen H L 2001 Chin. Phys. Lett. 18 850
[27] Meng X G, Wang J S and Li Y L 2007 Chin. Phys. 16 2415
[28] Wang J S and Meng X G 2008 Chin. Phys. B 17 1254
[1] Nonclassicality of photon-modulated spin coherent states in the Holstein—Primakoff realization
Xiaoyan Zhang(张晓燕), Jisuo Wang(王继锁), Lei Wang(王磊),Xiangguo Meng(孟祥国), and Baolong Liang(梁宝龙). Chin. Phys. B, 2022, 31(5): 054205.
[2] Margolus-Levitin speed limit across quantum to classical regimes based on trace distance
Shao-Xiong Wu(武少雄), Chang-Shui Yu(于长水). Chin. Phys. B, 2020, 29(5): 050302.
[3] Quantum-classical correspondence and mechanical analysis ofa classical-quantum chaotic system
Haiyun Bi(毕海云), Guoyuan Qi(齐国元), Jianbing Hu(胡建兵), Qiliang Wu(吴启亮). Chin. Phys. B, 2020, 29(2): 020502.
[4] Wigner function for squeezed negative binomial state and evolution of density operator for amplitude decay
Heng-Yun Lv(吕恒云), Ji-Suo Wang(王继锁), Xiao-Yan Zhang(张晓燕), Meng-Yan Wu(吴孟艳), Bao-Long Liang(梁宝龙), Xiang-Guo Meng(孟祥国). Chin. Phys. B, 2019, 28(9): 090302.
[5] Negativity of Wigner function and phase sensitivity of an SU(1,1) interferometer
Chun-Li Liu(刘春丽), Li-Li Guo(郭丽丽), Zhi-Ming Zhang(张智明), Ya-Fei Yu(於亚飞). Chin. Phys. B, 2019, 28(6): 060704.
[6] Cryo-ET bridges the gap between cell biology and structural biophysics
Xiao-Fang Cheng(程小芳), Rui Wang(王睿), Qing-Tao Shen(沈庆涛). Chin. Phys. B, 2018, 27(6): 066803.
[7] Analytical and numerical investigations of displaced thermal state evolutions in a laser process
Chuan-Xun Du(杜传勋), Xiang-Guo Meng(孟祥国), Ran Zhang(张冉), Ji-Suo Wang(王继锁). Chin. Phys. B, 2017, 26(12): 120301.
[8] Quantum statistical properties of photon-added spin coherent states
G Honarasa. Chin. Phys. B, 2017, 26(11): 114202.
[9] Quantum metrology with two-mode squeezed thermal state: Parity detection and phase sensitivity
Heng-Mei Li(李恒梅), Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春), Zhen Wang(王震). Chin. Phys. B, 2016, 25(10): 104203.
[10] Algebraic and group treatments to nonlinear displaced number statesand their nonclassicality features: A new approach
N Asili Firouzabadi, M K Tavassoly, M J Faghihi. Chin. Phys. B, 2015, 24(6): 064204.
[11] Comparison between photon annihilation-then-creation and photon creation-then-annihilation thermal states:Non-classical and non-Gaussian properties
Xu Xue-Xiang (徐学翔), Yuan Hong-Chun (袁洪春), Wang Yan (王燕). Chin. Phys. B, 2014, 23(7): 070301.
[12] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[13] Nonclassicality and decoherence of coherent superposition operation of photon subtraction and photon addition on squeezed state
Xu Li-Juan (徐莉娟), Tan Guo-Bin (谭国斌), Ma Shan-Jun (马善钧), Guo Qin (郭琴). Chin. Phys. B, 2013, 22(3): 030311.
[14] A new type of photon-added squeezed coherent state and its statistical properties
Zhou Jun(周军), Fan Hong-Yi(范洪义), and Song Jun(宋军) . Chin. Phys. B, 2012, 21(7): 070301.
[15] Quantum phase distribution and the number–phase Wigner function of the generalized squeezed vacuum states associated with solvable quantum systems
G. R. Honarasa, M. K. Tavassoly, and M. Hatami . Chin. Phys. B, 2012, 21(5): 054208.
No Suggested Reading articles found!