CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
A broadband external cavity tunable InAs/GaAs quantum dot laser by utilizing only the ground state emission |
LÜ Xue-Qin(吕雪芹), Jin Peng(金鹏)†, and Wang Zhan-Guo(王占国) |
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract A broadband external cavity tunable laser is realized by using a broad-emitting spectral InAs/GaAs quantum dot (QD) gain device. A tuning range of 69 nm with a central wavelength of 1056 nm, is achieved at a bias of 1.25 kA/cm$^2$ only by utilizing the light emission from the ground state of QDs. This large tunable range only covers the QD ground-state emission and is related to the inhomogeneous size distribution of QDs. No excited state contributes to the tuning bandwidth. The application of the QD gain device to the external cavity tunable laser shows its immense potential in broadening the tuning bandwidth. By the external cavity feedback, the threshold current density can be reduced remarkably compared with the free-running QD gain device.
|
Received: 24 June 2009
Revised: 12 July 2009
Accepted manuscript online:
|
PACS:
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
85.35.Be
|
(Quantum well devices (quantum dots, quantum wires, etc.))
|
|
Fund: Project supported by the National
Basic Research Program of China (Grant No. 2006CB604904) and the
National Natural Science Foundation of China (Grant Nos. 60976057,
60876086 and 60776037). |
Cite this article:
LÜ Xue-Qin(吕雪芹), Jin Peng(金鹏), and Wang Zhan-Guo(王占国) A broadband external cavity tunable InAs/GaAs quantum dot laser by utilizing only the ground state emission 2010 Chin. Phys. B 19 018104
|
[1] |
Woodworth S C, Cassidy D T and Hamp M J 2001 Appl. Opt. 40 6719
|
[2] |
Yi L, Yuan J, Qi X H, Chen W L, Zhou D W, Zhou T, Zhou X J and Chen X Z 2009 Chin. Phys. B 18 1409
|
[3] |
Loo W J and Lanigan S W 2002 Lasers Med. Sci. 17 9
|
[4] |
Olesberg J T, Arnold M A, Mermelstein C, Schmitz J and Wagner J 2005 Appl. Spectrosc. 59 1480
|
[5] |
Tanaka T, Hibino Y, Hashimoto T, Abe M, Kasahara R and Tohmori Y 2004 J. Lightwave Technol. 22 567
|
[6] |
Lidgard A, Tanbun-Ek T, Logan R A, Temkin H, Wecht K W and Olsson N A 1990 Appl. Phys. Lett. 56 816
|
[7] |
Tabuchi H and Ishikawa H 1990 Electron. Lett. 26 742
|
[8] |
Gingrich H S, Chumney D R, Sun S Z, Hersee S D, Lester L F and Brueck S R J 1997 IEEE Photon. Technol. Lett. 9 155
|
[9] |
Zhu X, Cassidy D T, Hamp M J, Thompson D A, Robinson B J, Zhao Q C and Davies M 1997 IEEE Photon. Technol. Lett. 9 1202
|
[10] |
Lee B L and Lin C F 1998 IEEE Photon. Technol. Lett. 10 322
|
[11] |
Woodworth S C, Cassidy D T and Hamp M J 2003 IEEE J. Quant. Electron. 39 426
|
[12] |
Zhu T W, Xu B, He J, Zhao F A, Zhang C L, Xie E Q, Liu F Q and Wang Z G 2004 Acta Phys. Sin. 53 301 (in Chinese)
|
[13] |
Tang N Y, Chen X S and Lu W 2005 Acta Phys. Sin. 54 5855 (in Chinese)
|
[14] |
Chia C K, Chua S J, Dong J R and Teo S L 2007 Appl. Phys. Lett. 90 061101
|
[15] |
Kovsh A, Krestnikov I, Livshits D, Mikhrin S, Weimert J and Zhukov A 2007 Opt. Lett. 32 793
|
[16] |
Liu N, Jin P and Wang Z G 2005 Electron. Lett. 41 1400
|
[17] |
Li L H, Rossetti M, Fiore A, Occhi L and Vélez C 2006 Phys. Status Solidi B 243 3988
|
[18] |
Lv X Q, Liu N, Jin P and Wang Z G 2008 IEEE Photon. Technol. Lett. 20 1742
|
[19] |
Zhang Z Y, Hogg R A, Xu B, Jin P and Wang Z G 2008 Opt. Lett. 33 1210
|
[20] |
Sugawara M, Mukai K and Nakata Y 1999 Appl. Phys. Lett. 74 1561
|
[21] |
Eliseev P, Li H, Stintz A, Liu G T, Newell T C, Malloy K J and Lester L F 2000 IEEE J. Quant. Electron. 36 479
|
[22] |
Li H, Liu G T, Varangis P M, Newell T C, Stintz A, Fuchs B, Malloy K J and Lester L F 2000 IEEE Photon. Technol. Lett. 12 759
|
[23] |
Varangis P M, Li H, Liu G T, Newell T C, Stintz A, Fuchs B, Malloy K J and Lester L F 2000 Electron. Lett. 36 1544
|
[24] |
Biebersdorf A, Lingk C, Giorgi M De, Feldmann J, Sacher J, Arzberger M, Ulbrich C, B?hm G, Amann M-C and Abstreiter G 2003 J. Phys. D: Appl. Phys.
|
36 |
1928
|
[25] |
Allen C Ni, Poole P J, Barrios P, Marshall P, Pakulski G, Raymond S and Fafard S 2005 Physica E 26 372
|
[26] |
Ortner G, Allen C Ni, Dion C, Barrios P, Poitras D, Dalacu D, Pakulski G, Lapointe J, Poole P J, Render W and Raymond S 2006 Appl. Phys. Lett. 88
|
12 |
1119
|
[27] |
A Tierno and T Ackemann 2007 Appl. Phys. B 89 585
|
[28] |
Nevsky A Yu, Bressel U, Ernsting I, Eisele Ch, Okhapkin M, Schiller S, Gubenko A, Livshits D, Mikhrin S, Krestnikov I and Kovsh A 2008 Appl. Phys. B
|
92 |
501
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|