Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 017101    DOI: 10.1088/1674-1056/19/1/017101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study of La and Sb-doping effects on electronic structure and optical properties of SrTiO3

Yun Jiang-Ni(贠江妮)a)b), Zhang Zhi-Yong(张志勇)a), Yan Jun-Feng(闫军锋)a), and Deng Zhou-Hu(邓周虎) a)
a School of Information Science and Technology, Northwest University, Xi'an 710127, China; b Institute of Photonics and Photon-Technology of Northwest University, Xi'an 710069, China
Abstract  The effects of La and Sb doping on the electronic structure and optical properties of SrTiO3 are investigated by first-principles calculation of the plane wave ultra-soft pseudo-potential based on density functional theory. The calculated results reveal that corner-shared TiO6 octahedra dominate the main electronic properties of SrTiO3, and its structural stability can be improved by La doping. The La3+ ion fully acts as an electron donor in Sr0.875La0.125TiO3 and the Fermi level shifts into the conduction bands (CBs) after La doping. As for SrSb0.125Ti0.875O3, there is a distortion near the bottom of the CBs for SrSb0.125Ti0.875O3 after Sb doping and an incipient localization of some of the doped electrons trapped in the Ti site, making it impossible to describe the evolution of the density of states (DOS) within the rigid band model. At the same time, the DOSs of the two electron-doped systems shift towards low energies and the optical band gaps are broadened by about 0.4 and 0.6 eV for Sr0.875La0.125TiO3 and SrSb0.125Ti0.875O3, respectively. Moreover, the transmittance of SrSb0.125Ti0.875O3 is as high as 95% in most of the visible region, which is higher than that of Sr0.875La0.125TiO3 (85%). The wide band gap, the small transition probability and the weak absorption due to the low partial density of states (PDOS) of impurity in the Fermi level result in the significant optical transparency of SrSb0.125Ti0.875O3.
Keywords:  density functional theory      SrTiO3      doping      electronic structure  
Received:  08 May 2009      Revised:  23 July 2009      Accepted manuscript online: 
PACS:  71.20.Ps (Other inorganic compounds)  
  61.72.up (Other materials)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  78.40.Ha (Other nonmetallic inorganics)  
Fund: Project supported by the Northwest University (NWU) Graduate Innovation and Creativity Funds (Grant No. 08YZZ47) and the Natural Science Foundation of Shaanxi Province of China (Grant No. 2009JM8013).

Cite this article: 

Yun Jiang-Ni(贠江妮), Zhang Zhi-Yong(张志勇), Yan Jun-Feng(闫军锋), and Deng Zhou-Hu(邓周虎) First-principles study of La and Sb-doping effects on electronic structure and optical properties of SrTiO3 2010 Chin. Phys. B 19 017101

[1] Kim H and Pique A 2004 Appl. Phys. Lett. 84 218
[2] Furubayashi Y, Yamada N, Hirose Y, Yamamoto Y, Otani M, Hitosugi T, Shimada T and Hasegawa T 2007 J. Appl. Phys. 101 093705
[3] Liu Q Z, Wang H F, Chen F and Wu W 2008 J. Appl. Phys. 103 093709
[4] Kwon Y, Li Y, Heo Y W, Jones M, Holloway P H, Norton D P, Park Z V and Li S 2004 Appl. Phys. Lett. 84 2685
[5] Siddiqui J, Cagin E, Chen D and Phillips J D 2006 Appl. Phys. Lett. 88 212903
[6] Wang H F, Liu Q Z, Chen F, Gao G Y, Wu W and Chen X H 2007 J. Appl. Phys. 101 106105
[7] Wang H H, Chen F, Dai S Y, Zhao T, Lu H B, Cui D F, Zhou Y L, Chen Z H and Yang G Z 2001 Appl. Phys. Lett. 78 1676
[8] Cho J H and Cho H J 2001 Appl. Phys. Lett. 79 1426
[9] Guo H Z, Liu L F, Fei Y Y, Xiang W F, Lu H B, Dai S Y, Zhou Y L and Chen Z H 2003 J. Appl. Phys. 94 4558
[10] Wang R P and Tao C J 2002 J. Cryst. Growth 245 63
[11] Tetsuka H, Shan Y J, Tezuka K and Imoto H 2006 Solid State Commun. 137 345
[12] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys. Conds. Matt. 14 2717
[13] Van Benthem K, Elsassser C and French R H 2001 J. Appl. Phys. 90 6156
[14] Vanderbilt D 1990 Phys. Rev. B 41 7892
[15] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[16] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[17] Pfrommer B G, Cote M, Louie S G and Cohen M L 1997 J. Comput. Phys. 131 233
[18] Xiao B, Feng J, Zhou C T, Xing J D, Xie X J and Chen Y H 2008 Chem. Phys. Lett. 459 129
[19] Hashimoto S, Kindermann L, Poulsen F W and Mogensen M 2005 J. Alloy. Compd. 397 245
[20] Yang Y T, Wu J, Cai Y R, Ding R X, Song J X and Shi L C 2008 Acta Phys. Sin. 57 7151 (in Chinese)
[21] Jones R O and Gunnarsson O 1989 Rev. Mod. Phys. 61 689
[22] Wei S H and Zunger A 1988 Phys. Rev. B 37 8958
[23] Burstein E 1954 Phys. Rev. 93 632
[24] San H S, Li B, Feng B X, He Y Y and Chen C 2005 Acta Phys. Sin. 54 842 (in Chinese)
[25] Saha S, Sinha T P and Mookerjee A 2000 Phys. Rev. B 62 8828
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[4] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[5] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[6] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[7] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[8] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[9] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[10] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[13] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[14] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[15] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
No Suggested Reading articles found!