|
|
Deterministic and exact entanglement teleportation viathe W state |
Chen Xiu-Bo(陈秀波)a)b)c)†, Wen Qiao-Yan(温巧燕)a), Sun Zhong-Xu(孙中旭)d), Shangguan Li-Ying(上官丽英)a), and Yang Yi-Xian(杨义先)a)b)c) |
a State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China; b Key Laboratory of Network and Information Attack and Defence Technology of Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, Chinac National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876, Chinad Water Supply Company of Daqing Petroleum Administration, Daqing 163453, China |
|
|
Abstract Utilizing a three-particle W state, we come up with a protocol for the teleportation of an unknown two-particle entangled state. It is shown that the teleportation can be deterministically and exactly realized. Moreover, two-particle entanglement teleportation is generalized to a system consisting of many particles via a three-particle W state and a multi-particle W state, respectively. All unitary transformations performed by the receiver are given in a concise formula.
|
Received: 02 February 2009
Revised: 13 April 2009
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Fund: Project supported by the National
Natural Science Foundation of China (Grant Nos. 60873191 and
60821001), the Specialized Research Fund for the Doctoral Program of
Higher Education of China (Grant No. 200800131016), the Key Project
of Chinese Ministry of Education (Grant No. 109014), the China
Postdoctoral Science Foundation Funded Project (Grant
No. 20090450018), the Beijing Natural Science Foundation (Grant No.
4072020), the 111 Project (Grant No. B08004) and the National Basic
Research Program of China (Grant No. 2007CB311203). |
Cite this article:
Chen Xiu-Bo(陈秀波), Wen Qiao-Yan(温巧燕), Sun Zhong-Xu(孙中旭), Shangguan Li-Ying(上官丽英), and Yang Yi-Xian(杨义先) Deterministic and exact entanglement teleportation viathe W state 2010 Chin. Phys. B 19 010303
|
[1] |
Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[2] |
Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
|
[3] |
Marcikic I, de Riedmatten H, Tittel W, Zbinden H and Gisin N 2003 Nature 421 509
|
[4] |
Ursin R, Jennewein T, Aspelmeyer M, Kaltenbaek R, Lindenthal M, Walther P and Zeilinger A 2004 Nature 430 849
|
[5] |
Stenholm S and Bardroff P J 1998 Phys. Rev. A 58 4373
|
[6] |
Braunstein S L and Kimble H J 1998 Phys. Rev. Lett. 80 869
|
[7] |
Cao Z L and Song W 2005 Physica A 347 177
|
[8] |
Chen X B, Du J Z, Wen Q Y and Zhu F C 2008 Chin. Phys. B 17 771
|
[9] |
Chen X B, Wen Q Y and Zhu F C 2006 Chin. Phys. 15 2240
|
[10] |
Chen X B, Wen Q Y and Zhu F C 2007 Int. J. Quant. Inform. 5 717
|
[11] |
Bae J, Jin J, Kim J, Yoon C and Kwon Y 2005 Chaos, Solitons and Fractals 24 1047
|
[12] |
Chen X B, Zhang N, Lin S, Wen Q Y and Zhu F C 2008 Opt. Commun. 281 2331
|
[13] |
Vidal G, Jonathan D and Nielsen M A 2000 Phys. Rev. A 62 012304
|
[14] |
Chen X B, Wen Q Y, Xu G, Yang Y X and Zhu F C 2009 Phys. Rev. A 79 036301
|
[15] |
Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
|
[16] |
Joo J, Park Y J, Oh S and Kim J 2003 New J. Phys. 5 136
|
[17] |
Agrawal P and Pati A 2006 Phys. Rev. A 74 062320
|
[18] |
Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
|
[19] |
Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
|
[20] |
Roos C F, Riebe M, Haffner H, Hansel W, Benhelm J, Lancaster G P T, Becher C, Schmidt-Kaler F and Blatt R 2004 Science 304 1478
|
[21] |
Zheng S B 2006 Phys. Rev. A 74 054303
|
[22] |
Gottesman D and Chuang I L 1999 Nature 402 390
|
[23] |
Ukowski M, Zeilinger A, Horne M A and Ekert A K 1993 Phys. Rev. Lett. 71 4287
|
[24] |
Wang X B, Shi B S, Tomita A and Matsumoto K 2004 Phys. Rev. A 69 014303
|
[25] |
Lu C Y, Zhou X Q, Guhne O, Gao W B, Zhang J, Yuan Z S, Goebel A, Yang T and Pan J W 2007 Nature Physics 3 91
|
[26] |
Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J and Spiller T P 2005 Phys. Rev. A 71 060302
|
[27] |
Walborn S P, Padua S and Monken C H 2003 Phys. Rev. A 68 042313
|
[28] |
Kim Y H 2003 Phys. Rev. A 67 040301
|
[29] |
Chen X B, Wen Q Y, Guo F Z, Sun Y, Xu G and Zhu F C 2008 Int. J. Quant. Inform. 6 899
|
[30] |
O'Brien J L, Pryde G J, White A G, Ralph T C and Branning D 2003 Nature 426 264
|
[31] |
Fang J X, Lin Y S, Zhu S Q and Chen X F 2003 Phys. Rev. A 67 014305
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|