Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(6): 2364-2371    DOI: 10.1088/1674-1056/18/6/041
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

The Similarity of interactions between (3+1)D spatiotemporal optical solitons in both the dispersive medium with cubic-quintic nonlinearity and the saturable medium

Peng Jin-Zhang(彭金璋)a)b), Yang Hong(杨红)a), and Tang Yi(唐翌)b)
a College of Physics Science and Information Engineering, Jishou University, Jishou 416000, China; b Department of Physics, Xiangtan University, Xiangtan 411105, China
Abstract  By making use of the split-step Fourier method, this paper numerically simulates dynamical behaviors, including repulsion, fusion, scattering and spiraling of colliding (3+1)D spatiotemporal solitons in both the dispersive medium with cubic-quintic and the saturable medium. Careful comparison of the colliding behaviors in these two media is presented. Although the origin of the nonlinearities is different in these two media, the obtained results show that the dynamical behaviors are very similar. This presents additional evidence to support the supposition of universality of interactions between solitons.
Keywords:  spatiotemporal solitons      cubic-quintic nonlinearity      interactions  
Received:  26 September 2008      Revised:  20 November 2008      Accepted manuscript online: 
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.Hw (Phase conjugation; photorefractive and Kerr effects)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
Fund: Project supported by the Key Project of the Educational Department of Hunan Province of China (Grant No 04A058), the Natural Science Foundation of Hunan Province of China (Grant No 05JJ30078) and the Research Project of Jishou University (Grant No 08JDZC002).

Cite this article: 

Peng Jin-Zhang(彭金璋), Yang Hong(杨红), and Tang Yi(唐翌) The Similarity of interactions between (3+1)D spatiotemporal optical solitons in both the dispersive medium with cubic-quintic nonlinearity and the saturable medium 2009 Chin. Phys. B 18 2364

[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[3] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[4] Probing component contributions and internal polarization in silicon-graphite composite anode for lithium-ion batteries with an electrochemical-mechanical model
Yue Chen(陈约), Fuliang Guo(郭福亮), Lufeng Yang(杨陆峰), Jiaze Lu(卢嘉泽), Danna Liu(刘丹娜), Huayu Wang(王华宇), Jieyun Zheng(郑杰允), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(7): 078201.
[5] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[6] Particle captured by a field-modulating vortex through dielectrophoresis force
Bing Yan(严兵), Bo Chen(陈波), Zerui Peng(彭泽瑞), and Yong-Liang Xiong(熊永亮). Chin. Phys. B, 2022, 31(3): 034703.
[7] Effect of an electric field on dewetting transition of nitrogen-water system
Qi Feng(冯琦), Jiaxian Li(厉嘉贤), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军). Chin. Phys. B, 2022, 31(3): 036801.
[8] Peptide backbone-copper ring structure: A molecular insight into copper-induced amyloid toxicity
Jing Wang(王静), Hua Li(李华), Xiankai Jiang(姜先凯), Bin Wu(吴斌), Jun Guo(郭俊), Xiurong Su(苏秀榕), Xingfei Zhou(周星飞), Yu Wang(王宇), Geng Wang(王耿), Heping Geng(耿和平), Zheng Jiang(姜政), Fang Huang(黄方), Gang Chen(陈刚), Chunlei Wang(王春雷), Haiping Fang(方海平), and Chenqi Xu(许琛琦). Chin. Phys. B, 2022, 31(10): 108702.
[9] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[10] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[11] Production of dual species Bose-Einstein condensates of 39K and 87Rb
Cheng-Dong Mi(米成栋), Khan Sadiq Nawaz, Peng-Jun Wang(王鹏军), Liang-Chao Chen(陈良超), Zeng-Ming Meng(孟增明), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2021, 30(6): 063401.
[12] Accurate GW0 band gaps and their phonon-induced renormalization in solids
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2021, 30(11): 117101.
[13] Crystal growth and magnetic properties of quantum spin liquid candidate KErTe2
Weiwei Liu(刘维维), Dayu Yan(闫大禹), Zheng Zhang(张政), Jianting Ji(籍建葶), Youguo Shi(石友国), Feng Jin(金峰), and Qingming Zhang(张清明). Chin. Phys. B, 2021, 30(10): 107504.
[14] Acoustic radiation force on thin elastic shells in liquid
Run-Yang Mo(莫润阳), Jing Hu(胡静), Shi Chen(陈时), Cheng-Hui Wang(王成会). Chin. Phys. B, 2020, 29(9): 094301.
[15] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
No Suggested Reading articles found!