Please wait a minute...
Chinese Physics, 2007, Vol. 16(9): 2737-2744    DOI: 10.1088/1009-1963/16/9/040
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

A method of designing photonic crystal grating slow-wave circuit for Ribbon--Beam microwave travelling wave amplifiers

Yin Hai-Rong(殷海荣), Gong Yu-Bin(宫玉彬), Wei Yan-Yu(魏彦玉), Gong Hua-Rong(巩华荣), Yue Ling-Na(岳玲娜), Lu Zhi-Gang(路志刚), Huang Min-Zhi(黄民智), and Wang Wen-Xiang(王文祥)
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610005, China
Abstract  A method of designing a photonic crystal grating slow-wave circuit in which the cylinders of the 2D photonic crystals dot on a cross-sectional plane is established by calculating the band structures of the 2D photonic crystals, and the eigenfrequency of the equivalent waveguide grating. For calculating the band structures, the eigenvalue equations of the photonic crystals in the system of photonic crystal grating slow-wave circuit are derived in a special polarization mode. Two examples are taken to show the method. The design result is validated by the scattering parameters of the same circuit. The result indicates that there exists no photonic band gap if the metal gratings do not extend into the photonic crystals; the design of the circuit without the metal gratings extending into the photonic crystals is less flexible than that with the metal gratings extending into the photonic crystals.
Keywords:  TWTs      photonic crystals      millimetre-wave      THz      slow-wave circuit  
Received:  05 November 2006      Revised:  09 March 2007      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.79.Dj (Gratings)  
  84.30.Le (Amplifiers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos~60532010 and 60601005).

Cite this article: 

Yin Hai-Rong(殷海荣), Gong Yu-Bin(宫玉彬), Wei Yan-Yu(魏彦玉), Gong Hua-Rong(巩华荣), Yue Ling-Na(岳玲娜), Lu Zhi-Gang(路志刚), Huang Min-Zhi(黄民智), and Wang Wen-Xiang(王文祥) A method of designing photonic crystal grating slow-wave circuit for Ribbon--Beam microwave travelling wave amplifiers 2007 Chinese Physics 16 2737

[1] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[2] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[3] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[4] THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves
Zhongyang Li(李忠洋), Qianze Yan(颜钤泽), Pengxiang Liu(刘鹏翔), Binzhe Jiao(焦彬哲), Gege Zhang(张格格), Zhiliang Chen(陈治良), Pibin Bing(邴丕彬), Sheng Yuan(袁胜), Kai Zhong(钟凯), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(7): 074209.
[5] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[6] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
[7] Terahertz radiation generation by beating of two chirped laser pulses in a warm collisional magnetized plasma
Motahareh Arefnia, Mehdi Sharifian, and Mohammad Ghorbanalilu. Chin. Phys. B, 2021, 30(9): 094101.
[8] Mechanically tunable broadband terahertz modulator based on high-aligned Ni nanowire arrays
Wenfeng Xiang(相文峰), Xuan Liu(刘旋), Xiaowei Huang(黄晓炜), Qingli Zhou(周庆莉), Haizhong Guo(郭海中), and Songqing Zhao(赵嵩卿). Chin. Phys. B, 2021, 30(2): 026201.
[9] Determination of potassium sorbate and sorbic acid in agricultural products using THz time-domain spectroscopy
Yuying Jiang(蒋玉英), Guangming Li(李广明), Ming Lv(吕明), Hongyi Ge(葛宏义), Yuan Zhang(张元). Chin. Phys. B, 2020, 29(9): 098705.
[10] Broadband terahertz time-domain spectroscopy and fast FMCW imaging: Principle and applications
Yao-Chun Shen(沈耀春), Xing-Yu Yang(杨星宇), Zi-Jian Zhang(张子健). Chin. Phys. B, 2020, 29(7): 078705.
[11] Excitation-wavelength-dependent THz wave modulation via external bias electric field
Shi-Jia Feng(冯世嘉), Li-Quan Dong(董立泉), Dan-Ni Ma(马丹妮), Tong Wu(吴同), Yong Tan(谭永), Liang-Liang Zhang(张亮亮), Cun-Lin Zhang(张存林), Yue-Jin Zhao(赵跃进). Chin. Phys. B, 2020, 29(6): 064210.
[12] Electron dynamics of active mode-locking terahertz quantum cascade laser
Qiushi Hou(侯秋实), Chang Wang(王长), and Juncheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(12): 127302.
[13] A new viewpoint and model of neural signal generation and transmission: Signal transmission on myelinated neuron
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新), Chao Chang(常超)†, and Guozhi Liu(刘国治)‡. Chin. Phys. B, 2020, 29(10): 108701.
[14] Thermal tunable one-dimensional photonic crystals containing phase change material
Yuanlin Jia(贾渊琳), Peiwen Ren(任佩雯), and Chunzhen Fan(范春珍)†. Chin. Phys. B, 2020, 29(10): 104210.
[15] Competitive and synergistic adsorption of binary volatile organic compound mixtures on activated carbon
Jing Zhu(祝静), Hong-Lei Zhan(詹洪磊), Kun Zhao(赵昆), Xin-Yang Miao(苗昕扬), Qiong Zhou(周琼), Wen-Zheng Yue(岳文正). Chin. Phys. B, 2019, 28(2): 020204.
No Suggested Reading articles found!