Please wait a minute...
Chinese Physics, 2007, Vol. 16(6): 1700-1703    DOI: 10.1088/1009-1963/16/6/036
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

The system of L-band 2×10 Gb/s WDM transmission over conventional single mode fibre with 600 km by chirped fibre Bragg gratings dispersion compensation

Yan Feng-Ping(延凤平), Tong Zhi(童治), Wei Huai(魏淮), Pei Li(裴丽), Ning Ti-Gang(宁提纲), Fu Yong-Jun (傅永军), Zheng Kai(郑凯), Wang Lin (王琳), Li Yi-Fan (李一凡), Gong Tao-Rong(龚桃荣), and Jian Shui-Sheng(简水生)
Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China
Abstract  A chirped fibre Bragg grating according to ITU-T suggested L-band (2nd channel $\lambda _{1}=1570.83$ nm; 80th channel $\lambda _{2}=1603.57$ nm) with more than 1800 ps/nm single channel dispersion compensation is presented in this paper, of which the cladding mode loss, the delay curve ripple and the power fluctuation of the reflected spectrum are less than 0.5 dB, 50 ps and 0.25 dB, respectively. With this new FBG as dispersion compensation device, a $2\times 10$ Gb/s wavelength division multiplexing (WDM) L-band transmission of 600 km based on conventional single mode fibre (G.652 fibre) is performed without forward error correction. The bit error rate (BER) is less than 10$^{ - 12}$ and the power penalties of the 2nd and 80th channel of L-band are 1.8 dB and 2.0 dB, respectively.
Keywords:  chirped fibre Bragg grating      dispersion compensation      L-band      conventional single modefibre (G.652 fibre)  
Received:  23 September 2006      Revised:  21 October 2006      Accepted manuscript online: 
PACS:  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  42.79.Dj (Gratings)  
  42.81.Bm (Fabrication, cladding, and splicing)  
Fund: Project supported by the National High Technology Research and Development Program (Grant No~2001AA122063).

Cite this article: 

Yan Feng-Ping(延凤平), Tong Zhi(童治), Wei Huai(魏淮), Pei Li(裴丽), Ning Ti-Gang(宁提纲), Fu Yong-Jun (傅永军), Zheng Kai(郑凯), Wang Lin (王琳), Li Yi-Fan (李一凡), Gong Tao-Rong(龚桃荣), and Jian Shui-Sheng(简水生) The system of L-band 2×10 Gb/s WDM transmission over conventional single mode fibre with 600 km by chirped fibre Bragg gratings dispersion compensation 2007 Chinese Physics 16 1700

[1] Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2021, 30(7): 078504.
[2] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[3] A compact dual-band radiation system
Yuan-Qiang Yu(于元强), Yu-Wei Fan(樊玉伟), and Xiao-Yu Wang(王晓玉)$. Chin. Phys. B, 2020, 29(11): 118402.
[4] Observation of 550 MHz passively harmonic mode-locked pulses at L-band in an Er-doped fiber laser using carbon nanotubes film
Qianqian Huang(黄千千), Chuanhang Zou(邹传杭), Tianxing Wang(王天行), Mohammed Al Araimi, Aleksey Rozhin, Chengbo Mou(牟成博). Chin. Phys. B, 2018, 27(9): 094210.
[5] Wideband dispersion removal and mode separation of Lamb waves based on two-component laser interferometer measurement
Yan-Feng Xu(徐琰锋), Wen-Xiang Hu(胡文祥). Chin. Phys. B, 2017, 26(9): 094301.
[6] Surface plasmon-enhanced dual-band infrared absorber for VOx-based microbolometer application
Qi Li(李琦), Bing-qiang Yu(于兵强), Zhao-feng Li(李兆峰), Xiao-feng Wang(王晓峰), Zi-chen Zhang(张紫辰), Ling-feng Pan(潘岭峰). Chin. Phys. B, 2017, 26(8): 085202.
[7] Electromagnetic coupling reduction in dual-band microstrip antenna array using ultra-compact single-negative electric metamaterials for MIMO application
Xiao-Long Fu(付孝龙), Guo-Cheng Wu(吴国成), Wei-Xiong Bai(白渭雄), Guang-Ming Wang(王光明), Jian-Gang Liang(梁建刚). Chin. Phys. B, 2017, 26(2): 024101.
[8] Compact superconducting single-and dual-band filter design using multimode stepped-impedance resonator
Xiang Wang(王翔), Bin Wei(魏斌), Xi-Long Lu(陆喜龙), Xu-Bo Guo(郭旭波), Bi-Song Cao(曹必松). Chin. Phys. B, 2017, 26(12): 128501.
[9] Single-layer dual-band terahertz filter with weak coupling between two neighboring cross slots
Qi Li-Mei (亓丽梅), Li Chao (李超), Fang Guang-You (方广有), Li Shi-Chao (李士超). Chin. Phys. B, 2015, 24(10): 107802.
[10] Dual-band frequency selective surface with large band separation and stable performance
Zhou Hang(周航), Qu Shao-Bo(屈绍波), Peng Wei-Dong(彭卫东), Lin Bao-Qin(林宝勤), Wang Jia-Fu(王甲富), Ma Hua(马华), Zhang Jie-Qiu(张介秋), Bai Peng(柏鹏), Wang Xu-Hua(王徐华), and Xu Zhuo(徐卓) . Chin. Phys. B, 2012, 21(5): 054101.
[11] Dispersion compensation in an open-loop all-optical chaotic communication system
Liu Hui-Jie(刘慧杰), Ren Bin(任斌), and Feng Jiu-Chao(冯久超) . Chin. Phys. B, 2012, 21(4): 040501.
[12] Dual-band frequency selective surface with quasi-elliptic bandpass response
Zhou Hang(周航), Qu Shao-Bo(屈绍波), Peng Wei-Dong(彭卫东), Wang Jia-Fu(王甲富), Ma Hua(马华), Zhang Jie-Qiu(张介秋), Bai Peng(柏鹏), and Xu Zhuo(徐卓) . Chin. Phys. B, 2012, 21(3): 030301.
[13] Dispersion compensation for an ultrathin metal film using LCD–CCD system
Dai Yu (代煜), Zhang Jian-Xu (张建勋). Chin. Phys. B, 2012, 21(10): 104203.
[14] Polarization mode dispersion compensation in a novel dual polarization differential quadrature phase shift keying system
Qin Jiang-Xing(秦江星), Xi Li-Xia(席丽霞), Zhang Xiao-Guang(张晓光), and Tian Feng(田凤) . Chin. Phys. B, 2011, 20(11): 114201.
[15] Investigation of the influence of key parameters on the system performance in all-ptical label switching based on FSK/ASK orthogonal modulation format
Wei Lai(魏莱), Xin Xiang-Jun(忻向军), Ma Jian-Xin(马建新), Zhang Qi(张琦), Wang Kui-Ru(王葵如), Yu Chong-Xiu(余重秀), and Liu Bo(刘博). Chin. Phys. B, 2009, 18(5): 1861-1866.
No Suggested Reading articles found!