The system of L-band 2×10 Gb/s WDM transmission over conventional single mode fibre with 600 km by chirped fibre Bragg gratings dispersion compensation
Yan Feng-Ping(延凤平)†, Tong Zhi(童治), Wei Huai(魏淮), Pei Li(裴丽), Ning Ti-Gang(宁提纲), Fu Yong-Jun (傅永军), Zheng Kai(郑凯), Wang Lin (王琳), Li Yi-Fan (李一凡), Gong Tao-Rong(龚桃荣), and Jian Shui-Sheng(简水生)
Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China
Abstract A chirped fibre Bragg grating according to ITU-T suggested L-band (2nd channel $\lambda _{1}=1570.83$ nm; 80th channel $\lambda _{2}=1603.57$ nm) with more than 1800 ps/nm single channel dispersion compensation is presented in this paper, of which the cladding mode loss, the delay curve ripple and the power fluctuation of the reflected spectrum are less than 0.5 dB, 50 ps and 0.25 dB, respectively. With this new FBG as dispersion compensation device, a $2\times 10$ Gb/s wavelength division multiplexing (WDM) L-band transmission of 600 km based on conventional single mode fibre (G.652 fibre) is performed without forward error correction. The bit error rate (BER) is less than 10$^{ - 12}$ and the power penalties of the 2nd and 80th channel of L-band are 1.8 dB and 2.0 dB, respectively.
Received: 23 September 2006
Revised: 21 October 2006
Accepted manuscript online:
PACS:
42.79.Sz
(Optical communication systems, multiplexers, and demultiplexers?)
Fund: Project supported by the National High Technology Research and
Development Program (Grant No~2001AA122063).
Cite this article:
Yan Feng-Ping(延凤平), Tong Zhi(童治), Wei Huai(魏淮), Pei Li(裴丽), Ning Ti-Gang(宁提纲), Fu Yong-Jun (傅永军), Zheng Kai(郑凯), Wang Lin (王琳), Li Yi-Fan (李一凡), Gong Tao-Rong(龚桃荣), and Jian Shui-Sheng(简水生) The system of L-band 2×10 Gb/s WDM transmission over conventional single mode fibre with 600 km by chirped fibre Bragg gratings dispersion compensation 2007 Chinese Physics 16 1700
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.