Please wait a minute...
Chinese Physics, 2007, Vol. 16(5): 1374-1384    DOI: 10.1088/1009-1963/16/5/035
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Decreased vibrational susceptibility of Fabry--Perot cavities via designs of geometry and structural support

Yang Tao(杨涛)a), Li Wen-Bo(李文博)a), Zang Er-Jun(臧二军)b), and Chen Li-Sheng(陈李生)c)†
a Department of Physics, Beijing Jiaotong University, Beijing 100044, China; b National Institute of Metrology, Beijing 100013, China; c Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
Abstract  Ultra-stable optical cavities are widely used for laser frequency stabilization. In these experiments the laser performance relies on the length stability of the Fabry--Perot cavities. Vibration-induced deformation is one of the dominant factors that affect the stability of ultra-stable optical cavities. We have quantitatively analysed the elastic deformation of Fabry--Perot cavities with various shapes and mounting configurations. Our numerical result facilitates a novel approach for the design of ultra-stable cavities that are insensitive to vibrational perturbations. This approach can be applied to many experiments such as laser frequency stabilization, high-precision laser spectroscopy, and optical frequency standards.
Keywords:  optical cavity      laser frequency stabilization      optical frequency standard      precision measurement  
Received:  09 July 2006      Revised:  28 November 2006      Accepted manuscript online: 
PACS:  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.60.By (Design of specific laser systems)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
  62.20.D- (Elasticity)  
  62.20.F- (Deformation and plasticity)  
Fund: Project supported by National Institute of Metrology and Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences.

Cite this article: 

Yang Tao(杨涛), Li Wen-Bo(李文博), Zang Er-Jun(臧二军), and Chen Li-Sheng(陈李生) Decreased vibrational susceptibility of Fabry--Perot cavities via designs of geometry and structural support 2007 Chinese Physics 16 1374

[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[3] Preparation of a two-state mixture of ultracold fermionic atoms with balanced population subject to the unstable magnetic field
Donghao Li(李东豪), Lianghui Huang(黄良辉), Guoqi Bian(边国旗), Jie Miao(苗杰), Liangchao Chen(陈良超), Zengming Meng(孟增明), Wei Han(韩伟), and Pengjun Wang(王鹏军). Chin. Phys. B, 2021, 30(9): 090303.
[4] Spectral filtering of dual lasers with a high-finesse length-tunable cavity for rubidium atom Rydberg excitation
Yang-Yang Liu(刘杨洋), Zhuo Fu(付卓), Peng Xu(许鹏), Xiao-Dong He(何晓东), Jin Wang(王谨), and Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2021, 30(7): 074203.
[5] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[6] Precision measurements with cold atoms and trapped ions
Qiuxin Zhang(张球新), Yirong Wang(王艺蓉), Chenhao Zhu(朱晨昊), Yuxin Wang(王玉欣), Xiang Zhang(张翔), Kuiyi Gao(高奎意), Wei Zhang(张威). Chin. Phys. B, 2020, 29(9): 093203.
[7] Movable precision gravimeters based on cold atom interferometry
Jiong-Yang Zhang(张炯阳), Le-Le Chen(陈乐乐), Yuan Cheng(程源), Qin Luo(罗覃), Yu-Biao Shu(舒玉彪), Xiao-Chun Duan(段小春), Min-Kang Zhou(周敏康), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2020, 29(9): 093702.
[8] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[9] Precision measurement with atom interferometry
Wang Jin (王谨). Chin. Phys. B, 2015, 24(5): 053702.
[10] Precision spectroscopy with a single 40Ca+ ion in a Paul trap
Guan Hua (管桦), Huang Yao (黄垚), Liu Pei-Liang (刘培亮), Bian Wu (边武), Shao Hu (邵虎), Gao Ke-Lin (高克林). Chin. Phys. B, 2015, 24(5): 054213.
[11] Micro-Gal level gravity measurements with cold atom interferometry
Zhou Min-Kang (周敏康), Duan Xiao-Chun (段小春), Chen Le-Le (陈乐乐), Luo Qin (罗覃), Xu Yao-Yao (徐耀耀), Hu Zhong-Kun (胡忠坤). Chin. Phys. B, 2015, 24(5): 050401.
[12] Improvement on the magneto-optical Kerr effect of cobalt film with a quadrilayer structure
Zhang Shao-Yin (张绍银), Tang Shao-Long (唐少龙), Gao Jin-Long (高锦龙), Luo Xiao-Jing (罗晓婧), Xia Wen-Bin (夏文斌), Du You-Wei (都有为). Chin. Phys. B, 2013, 22(8): 087802.
[13] Electromagnetically induced transparency of single Λ-type three-level atom in high-finesse optical cavity
Sun Yan-Fen (孙燕芬), Tan Lei (谭磊), Xu Yan (徐岩). Chin. Phys. B, 2013, 22(3): 030309.
[14] Demonstration of the approximation of eliminating atomic excited populations in an atom–cavity system
Zhang Yu-Qing(张玉青), Huang Gang(黄刚), and Tan Lei(谭磊) . Chin. Phys. B, 2012, 21(2): 023701.
[15] Atomic N00N state generation in distant cavities by virtual excitations
Yang Rong-Can (杨榕灿), Li Gang (李刚), Li Jie (李杰), Zhang Tian-Cai (张天才). Chin. Phys. B, 2011, 20(6): 060302.
No Suggested Reading articles found!