|
|
Atomic N00N state generation in distant cavities by virtual excitations |
Yang Rong-Can (杨榕灿)ab, Li Gang (李刚)a, Li Jie (李杰)a, Zhang Tian-Cai (张天才)a |
a State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China; b School of Physics and Opto-Electronics Technology, Fujian Normal University, Fuzhou 350007, China |
|
|
Abstract A general scheme of generating N00N states of virtually-excited 2N atoms is proposed. The two cavities are fibre-connected with N atoms in each cavity. Although we focus on the case of N=2, the system can be extended to a few atoms with N>2. It is found that all 2N atoms can be entangled in the form of N00N states if the atoms in the first cavity are initially in the excited states and atoms in the second cavity are all in the ground states. The feasibility of the scheme is carefully discussed, it shows that the N00N state with a few atoms can be generated with good fidelity and the scheme is feasible in experiment.
|
Received: 26 October 2010
Revised: 06 January 2011
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Fund: Project supported in part by the National Natural Science Foundation of China (Grant Nos. 10974125 and 60821004), the State
Basic Key Research Program of China (Grant No. 2006CB921102), and the Science Foundation of the Educational Committee of
Fujian Province, China (Grant No. JA09041). |
Cite this article:
Yang Rong-Can (杨榕灿), Li Gang (李刚), Li Jie (李杰), Zhang Tian-Cai (张天才) Atomic N00N state generation in distant cavities by virtual excitations 2011 Chin. Phys. B 20 060302
|
[1] |
Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
|
[2] |
Liu J, Wang Q, Kuang L M and Zeng H S 2010 Chin. Phys. B 19 030313
|
[3] |
Dür W, Cirac J I and Tarrach R 1999 Phys. Rev. Lett. 83 3562
|
[4] |
Ashfaq H K, Rameez-ul-Islam and Farhan S 2010 Chin. Phys. B 19 040309
|
[5] |
Zheng S B 2006 Phys. Rev. A 74 054303
|
[6] |
Fang M F and Kang G D 2008 Chin. Phys. B 17 3729
|
[7] |
Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
|
[8] |
Yang R C, Li H C, Lin X and Huang Z P 2007 Chin. Phys. 16 2219
|
[9] |
Bollinger J J, Itano W M, Wineland D J and Heinzen D J 1996 Phys. Rev. A 54 R4649
|
[10] |
Lee H, Kok P, Cerf N J and Dowling J P 2002 Phys. Rev. A 65 030101(R)
|
[11] |
Mitchell M W, Lundeen J S and Steinberg A M 2004 Nature 429 161
|
[12] |
Jones J A, Karlen S D, Fitzsimons J, Ardavan A, Benjamin S C, Briggs G A D and Morton J J L 2009 Science 324 1166
|
[13] |
Witelli C, Spagnolo N, Sciarrino F and De Martini F 2009 J. Opt. Soc. Am. B 26 892
|
[14] |
Gerry C C and Campos R A 2001 Phys. Rev. A 64 063814
|
[15] |
Walther P, Pan J W, Aspelmeyer M, Ursin R, Gasparoni S and Zeilinger A 2004 Nature 429 158
|
[16] |
Sun F W, Ou Z Y and Guo G C 2006 Phys. Rev. A 73 023808
|
[17] |
Kapale K T and Dowling J P 2007 Phys. Rev. Lett. 99 053602
|
[18] |
Dángelo M, Garuccio A and Tamma V 2008 Phys. Rev. A 77 063826
|
[19] |
Chen Y A, Bao X H, Yuan Z S, Chen S, Zhao B and Pan J W 2010 Phys. Rev. Lett. 104 043601
|
[20] |
Bose S, Knight P L, Plenio M B and Vedral V 1999 Phys. Rev. Lett. 83 5158
|
[21] |
Yang R C, Li H C, Chen M X and Lin X 2006 Chin. Phys. 15 2315
|
[22] |
Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
|
[23] |
Osnaghi S, Bertet P, Auffeves A, Maioli P, Raimond J M and Haroche S 2001 Phys. Rev. Lett. 87 037902
|
[24] |
Blinov B B, Moehring D L, Duan L M and Monroe C 2004 Nature 428 153
|
[25] |
Parkins A S and Kimble H J 2000 Phys. Rev. A 61 052104
|
[26] |
Mermin N D 1990 Phys. Rev. Lett. 65 1838
|
[27] |
Lin G W, Zou X B, Lin X M and Guo G C 2009 Phys. Rev. A 79 042332
|
[28] |
Serafini A, Mancini S and Bose S 2006 Phys. Rev. Lett. 96 010503
|
[29] |
Yin Z Q and Li F L 2007 Phys. Rev. A 75 012324
|
[30] |
Yang Z B, Wu H Z, Su W J and Zheng S B 2009 Phys. Rev. A 80 012305
|
[31] |
Nohama F K and Roversi J A 2008 J. Phys. B: At. Mol. Opt. Phys. 41 045503
|
[32] |
Chen L B, Ye M Y, Lin G W, Du Q H and Lin X M 2007 Phys. Rev. A 76 062304
|
[33] |
Zhou Y L, Wang Y M, Liang M and Li C Z 2009 Phys. Rev. A 79 044304
|
[34] |
Yang Z B, Ye S Y, Serafini A and Zheng S B J. Phys. B: At. Mol. Opt. Phys. 43 085506
|
[35] |
Zheng S B 2009 Appl. Phys. Lett. 94 154101
|
[36] |
Wilk T, Ga"etan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P and Browaeys A 2010 Phys. Rev. Lett. 104 010502
|
[37] |
Zheng S B 2010 Chin. Phys. B 19 064204
|
[38] |
James D F V 2000 Fortschr. Phys. 48 823
|
[39] |
Zheng S B 2005 Phys. Rev. A 71 062335
|
[40] |
Aguiar Pinto A C and Thomaz M T 2003 J. Phys. A: Math. Gen. 36 7461
|
[41] |
Lin G W, Zou X B, Lin X M and Guo G C 2009 Appl. Phys. Lett. 95 224102
|
[42] |
Hartmann M J, Brand ao F G S L and Plenio M B 2006 Nature Phys. 2 849
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|