Please wait a minute...
Chinese Physics, 2007, Vol. 16(3): 753-757    DOI: 10.1088/1009-1963/16/3/032
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Statistical analysis of aggregation in freeway traffic

Li Jun-Wei(李俊卫)a), Lin Bo-Liang(林柏梁)a), and Huang Yong-Chang(黄永畅)b)
a State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China; Institute of Theoretical Physics, College of Applied Sciences, Beijing University of Technology, Beijing 100022, China
Abstract  We restudy the master-equation approach to aggregation in freeway traffic based on the theory of birth--death process, in which the clustering behaviour in one-lane freeway traffic model is investigated. The transition probabilities for the jump processes are reconstructed by using Greenshields' model, and the equation of the mean size of the cluster at any time t is derived from the birth--death equation. Numerical experiments show the clustering behaviours varying with time very well.
Keywords:  traffic flow      statistics mechanism      master equation      birth--death process  
Received:  18 June 2006      Revised:  08 September 2006      Accepted manuscript online: 
PACS:  02.50.Fz (Stochastic analysis)  
  02.50.Cw (Probability theory)  
  89.40.Bb (Land transportation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10435080), the State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, China.

Cite this article: 

Li Jun-Wei(李俊卫), Lin Bo-Liang(林柏梁), and Huang Yong-Chang(黄永畅) Statistical analysis of aggregation in freeway traffic 2007 Chinese Physics 16 753

[1] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[2] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[3] A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption
Guang-Han Peng(彭光含), Te-Ti Jia(贾特提), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2022, 31(5): 058901.
[4] Traffic flow prediction based on BILSTM model and data denoising scheme
Zhong-Yu Li(李中昱), Hong-Xia Ge(葛红霞), and Rong-Jun Cheng(程荣军). Chin. Phys. B, 2022, 31(4): 040502.
[5] Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
Yuan Gong(公元) and Wen-Xing Zhu(朱文兴). Chin. Phys. B, 2022, 31(2): 024502.
[6] Modeling and analysis of car-following behavior considering backward-looking effect
Dongfang Ma(马东方), Yueyi Han(韩月一), Fengzhong Qu(瞿逢重), and Sheng Jin(金盛). Chin. Phys. B, 2021, 30(3): 034501.
[7] Quantum exceptional points of non-Hermitian Hamiltonian and Liouvillian in dissipative quantum Rabi model
Xianfeng Ou(欧先锋), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(11): 110309.
[8] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[9] A new car-following model with driver's anticipation effect of traffic interruption probability
Guang-Han Peng(彭光含). Chin. Phys. B, 2020, 29(8): 084501.
[10] Dynamical evolution of photon-added thermal state in thermal reservoir
Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春). Chin. Phys. B, 2019, 28(11): 110301.
[11] A macroscopic traffic model based on weather conditions
Zawar H. Khan, Syed Abid Ali Shah, T. Aaron Gulliver. Chin. Phys. B, 2018, 27(7): 070202.
[12] A new control method based on the lattice hydrodynamic model considering the double flux difference
Shunda Qin(秦顺达), Hongxia Ge(葛红霞), Rongjun Cheng(程荣军). Chin. Phys. B, 2018, 27(5): 050503.
[13] Traffic flow velocity disturbance characteristics and control strategy at the bottleneck of expressway
Jun-Wei Zeng(曾俊伟), Yong-Sheng Qian(钱勇生), Xu-Ting Wei(魏谞婷), Xiao Feng(冯骁). Chin. Phys. B, 2018, 27(12): 124502.
[14] Stability analysis of traffic flow with extended CACC control models
Ya-Zhou Zheng(郑亚周), Rong-Jun Cheng(程荣军), Siu-Ming Lo(卢兆明), Hong-Xia Ge(葛红霞). Chin. Phys. B, 2016, 25(6): 060506.
[15] Dynamics of spinor Bose-Einstein condensate subject to dissipation
Man-Man Pang(庞曼曼), Ya-Jiang Hao(郝亚江). Chin. Phys. B, 2016, 25(4): 040501.
No Suggested Reading articles found!