Abstract An alternative scheme is presented for teleportation of a two-atom entangled state in cavity quantum electrodynamics (QED). It is based on the resonant atom--cavity field interaction. In the scheme, only one cavity is involved, and the number of the atoms needed to be detected is decreased compared with the previous scheme. Since the resonant atom--cavity field interaction greatly reduces the interaction time, the decoherence effect can be effectively suppressed during the teleportation process. The experimental feasibility of the scheme is discussed. The scheme can easily be generalized to the teleportation of N-atom Greeninger--Horne--Zeilinger (GHZ) entangled states. The number of atoms needed to be detected does not increase as the number of the atoms in the GHZ state increases.
Received: 15 May 2006
Revised: 06 July 2006
Accepted manuscript online:
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.