Abstract The quantum features of the temporal photon statistics of an exciton--cavity coupled system in a quantum-well semiconductor microcavity are investigated analytically. Under the secular approximation, if the nonlinear interactions, i.e. the exciton--exciton coupling and the phase-space filling, are much weaker than the exciton--photon interaction, the evolution of the Fano factor shows that the distribution of the photon numbers exhibits the feature of collapses--revivals (CRs), and the relevant revival time may be adjusted by several factors such as the total particle number, the detuning, and the nonlinear coupling strengths, etc. Especially, the ideal maximum antibunching with the minimum value 0 of the Fano factor occurs periodically for such a situation, with the dissipation of exciton--polariton being ignored.
Received: 17 April 2006
Revised: 24 July 2006
Accepted manuscript online:
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.