Please wait a minute...
Chinese Physics, 2003, Vol. 12(5): 495-501    DOI: 10.1088/1009-1963/12/5/306
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Effects of discharge current and voltage on the high density of metastable helium atoms

Feng Xian-Ping (冯贤平)a, D Andruczykb, B W Jamesb, K Takiyamac, S Nambac, T Odad 
a Department of Physics, Donghua University, Shanghai 200051, China; b School of Physics, University of Sydney, NSW 2006, Australia; c Graduate School of Engineering, Hiroshima University, Hiroshima 739-8527, Japan; d Faculty of Engineering, Hiroshima Kokusai Gakuin University, Hiroshima 739-0321, Japan
Abstract  Both hollow-cathode and Penning-type discharges were adopted to excite helium atoms to a metastable state. Experimental data indicate that Penning discharge is more suitable for generating high fractions of metastables in a low-density helium beam for laser-induced fluorescence technique in measuring electric fields at the edge of a plasma. The metastable density increases with increasing helium gas pressure in the range of 1.33×10-2-66.7Pa. The highest metastable density of 3.8×1016m-3 is observed at a static gas pressure of 66.7Pa. An approximately linear relationship between the density of metastable helium atoms and the plasma discharge current is observed. Magnetic field plays a very important role in producing a high density of metastable atoms in Penning discharge.
Keywords:  Penning discharge      hollow-cathode discharge      metastable atoms      electric field  
Received:  19 May 2002      Revised:  03 January 2003      Accepted manuscript online: 
PACS:  52.80.Sm (Magnetoactive discharges (e.g., Penning discharges))  
  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
Fund: Project supported by the Australian Research Council, Donghua University and Shanghai Science and Technological Research Council (Grant No 0252nm110).

Cite this article: 

Feng Xian-Ping (冯贤平), D Andruczyk, B W James, K Takiyama, S Namba, T Oda Effects of discharge current and voltage on the high density of metastable helium atoms 2003 Chinese Physics 12 495

[1] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[2] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[3] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[4] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[5] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[6] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[7] Effect of an electric field on dewetting transition of nitrogen-water system
Qi Feng(冯琦), Jiaxian Li(厉嘉贤), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军). Chin. Phys. B, 2022, 31(3): 036801.
[8] Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique
Juan Qin(秦娟), Gang Cao(曹港), Run Xu(徐闰), Jing Lin(林婧), Hua Meng(孟华), Wen-Zhen Wang(王文贞), Zi-Ye Hong(洪子叶), Jian-Cong Cai(蔡健聪), and Dong-Mei Li(李冬梅). Chin. Phys. B, 2022, 31(11): 117102.
[9] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[10] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
[11] Electric-field-induced in-plane effective 90° magnetization rotation in Co2FeAl/PMN-PT structure
Cai Zhou(周偲), Dengyu Zhu(朱登玉), Fufu Liu(刘福福), Cunfang Feng(冯存芳), Mingfang Zhang(张铭芳), Lei Ding(丁磊), Mingyao Xu(许明耀), and Shengxiang Wang(汪胜祥). Chin. Phys. B, 2021, 30(5): 057504.
[12] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[13] Band alignment in SiC-based one-dimensional van der Waals homojunctions
Xing-Yi Tan(谭兴毅), Lin-Jie Ding(丁林杰), and Da-Hua Ren(任达华). Chin. Phys. B, 2021, 30(12): 126102.
[14] Effect of external electric field on the terahertz transmission characteristics of electrolyte solutions
Jia-Hui Wang(王佳慧), Guo-Yang Wang(王国阳), Xin Liu(刘欣), Si-Yu Shao(邵思雨), Hai-Yun Huang(黄海云), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2021, 30(11): 110204.
[15] Recent advances, perspectives, and challenges inferroelectric synapses
Bo-Bo Tian(田博博), Ni Zhong(钟妮), Chun-Gang Duan(段纯刚). Chin. Phys. B, 2020, 29(9): 097701.
No Suggested Reading articles found!