Please wait a minute...
Chinese Physics, 2003, Vol. 12(2): 211-217    DOI: 10.1088/1009-1963/12/2/317
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Influence of isothermal approximation on the phase-field simulation of directional growth in undercooled melt

Yu Yan-Mei (于艳梅), Yang Gen-Cang (杨根仓), Zhao Da-Wen (赵达文), Lü Yi-Li (吕衣礼)
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  By using the phase-field approach, we have simulated the directional growth of alloys in undercooled molten states under the isothermal and nonisothermal conditions. The influences of the isothermal approximation on simulation results are discussed. We found that for undercooling greater than 25K, the isothermal approximation overestimates the interface growth velocity and reduces a critical velocity for an absolute stable planar interface, thus in this simulation, the interface morphology shows the plane-cell-plane transition with increasing initial undercooling of the melt, and the planar interface obtained under a large undercooling is absolutely stable. Whereas in the nonisothermal simulation, only plane-cell transition occurs in the same range of the initial undercoolings of the melt, and the planar interface tends to be destabilized and evolve into cells.
Keywords:  phase-field      isothermal approximation      directional growth      undercooling  
Received:  28 June 2002      Revised:  14 October 2002      Accepted manuscript online: 
PACS:  64.70.D- (Solid-liquid transitions)  
  81.40.-z (Treatment of materials and its effects on microstructure, nanostructure, And properties)  
  68.08.-p (Liquid-solid interfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 59971037) and by the Northwestern Polytechnical University Doctoral Dissertation Innovation Foundation, China.

Cite this article: 

Yu Yan-Mei (于艳梅), Yang Gen-Cang (杨根仓), Zhao Da-Wen (赵达文), Lü Yi-Li (吕衣礼) Influence of isothermal approximation on the phase-field simulation of directional growth in undercooled melt 2003 Chinese Physics 12 211

[1] Simulation of single bubble dynamic process in pool boiling process under microgravity based on phase field method
Chang-Sheng Zhu(朱昶胜), Bo-Rui Zhao(赵博睿), Yao Lei(雷瑶), and Xiu-Ting Guo(郭秀婷). Chin. Phys. B, 2023, 32(4): 044702.
[2] Phase-field modeling of faceted growth in solidification of alloys
Hui Xing(邢辉), Qi An(安琪), Xianglei Dong(董祥雷), and Yongsheng Han(韩永生). Chin. Phys. B, 2022, 31(4): 048104.
[3] Phase-field study of spinodal decomposition under effect of grain boundary
Ying-Yuan Deng(邓英远), Can Guo(郭灿), Jin-Cheng Wang(王锦程), Qian Liu(刘倩), Yu-Ping Zhao(赵玉平), and Qing Yang(杨卿). Chin. Phys. B, 2021, 30(8): 088101.
[4] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[5] Effect of grain boundary energy anisotropy on grain growth in ZK60 alloy using a 3D phase-field modeling
Yu-Hao Song(宋宇豪), Ming-Tao Wang(王明涛), Jia Ni(倪佳), Jian-Feng Jin(金剑锋), and Ya-Ping Zong(宗亚平). Chin. Phys. B, 2020, 29(12): 128201.
[6] Effect of elasticity mismatch on cell deformation and migration: A phase-field study
Yuanfeng Yin(尹元枫), Hui Xing(邢辉), Duyang Zang(臧渡洋), Kexin Jin(金克新). Chin. Phys. B, 2018, 27(11): 116201.
[7] Metastable phase separation and rapid solidification of undercooled Co40Fe40Cu20 alloy
Xiaojun Bai(白晓军), Yaocen Wang(汪姚岑), Chongde Cao(曹崇德). Chin. Phys. B, 2018, 27(11): 116402.
[8] Elastic strain response in the modified phase-field-crystal model
Wenquan Zhou(周文权), Jincheng Wang(王锦程), Zhijun Wang(王志军), Yunhao Huang(黄赟浩), Can Guo(郭灿), Junjie Li(李俊杰), Yaolin Guo(郭耀麟). Chin. Phys. B, 2017, 26(9): 090702.
[9] Multi-phase field simulation of grain growth in multiple phase transformations of a binary alloy
Li Feng(冯力), Beibei Jia(贾北北), Changsheng Zhu(朱昶胜), Guosheng An(安国升), Rongzhen Xiao(肖荣振), Xiaojing Feng(冯小静). Chin. Phys. B, 2017, 26(8): 080504.
[10] Effect of elastic strain energy on grain growth and texture in AZ31 magnesium alloy by phase-field simulation
Ri He(何日), Ming-Tao Wang(王明涛), Jian-Feng Jin(金剑锋), Ya-Ping Zong(宗亚平). Chin. Phys. B, 2017, 26(12): 128201.
[11] Unifying the crystallization behavior of hexagonal and square crystals with the phase-field-crystal model
Tao Yang(杨 涛), Zheng Chen(陈铮), Jing Zhang(张静), Yongxin Wang(王永新), Yanli Lu(卢艳丽). Chin. Phys. B, 2016, 25(3): 038103.
[12] Effects of temperature gradient on the interface microstructure and diffusion of diffusion couples: Phase-field simulation
Li Yong-Sheng (李永胜), Wu Xing-Chao (吴兴超), Liu Wei (刘苇), Hou Zhi-Yuan (侯志远), Mei Hao-Jie (梅浩杰). Chin. Phys. B, 2015, 24(12): 126401.
[13] Phase-field study of the second phase particle effect on texture evolution of polycrystalline material
Lu Yan-Li (卢艳丽), Zhang Liu-Chao (张刘超), Zhou Ying-Ying (周影影), Chen Zheng (陈铮). Chin. Phys. B, 2014, 23(6): 069102.
[14] Dendrite to symmetry-broken dendrite transition in directional solidification of non-axially oriented crystals
Xing Hui (邢辉), Wang Jian-Yuan (王建元), Chen Chang-Le (陈长乐), Jin Ke-Xin (金克新), Du Li-Fei (杜立飞). Chin. Phys. B, 2014, 23(3): 038104.
[15] A phase-field model for simulating various spherulite morphologies of semi-crystalline polymers
Wang Xiao-Dong (王晓东), Ouyang Jie (欧阳洁), Su Jin (苏进), Zhou Wen (周文). Chin. Phys. B, 2013, 22(10): 106103.
No Suggested Reading articles found!