Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 106103    DOI: 10.1088/1674-1056/22/10/106103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

A phase-field model for simulating various spherulite morphologies of semi-crystalline polymers

Wang Xiao-Dong (王晓东), Ouyang Jie (欧阳洁), Su Jin (苏进), Zhou Wen (周文)
Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710129, China
Abstract  A modified phase-field model is proposed for simulating the isothermal crystallization of polymer melts. The model consists of a second-order phase-field equation and a heat conduction equation. It obtains its model parameters from the real material parameters and is easy to use with tolerable computational cost. Due to the use of a new free energy functional form, the model can reproduce various single crystal morphologies of polymer melts under quiescent conditions, including dendritic, lamellar branching, ring-banded, breakup of ring-banded, faceted hexagonal, and spherulitic structures. Simulation results of isotactic polystyrene crystals demonstrate that the present phase-field model has the ability to give qualitative predictions of polymer crystallization under isothermal and quiescent conditions.
Keywords:  phase-field      crystallization      polymer      dendritic      lamellar      ring-banded  
Received:  24 December 2012      Revised:  26 March 2013      Accepted manuscript online: 
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  81.30.-t (Phase diagrams and microstructures developed by solidification and solid-solid phase transformations)  
Fund: Project supported by the National Key Basic Research Program of China (973 Program) (Grant No. 2012CB025903), the Foundation for Fundamental Research of Northwestern Polytechnical University, China (Grant No. JCY20130141), the Doctorate Foundation of Northwestern Polytechnical University, China (Grant No. cx201019), and the Fund for Doctoral Students Newcomer Awards from the Ministry of Education of China.
Corresponding Authors:  Ouyang Jie     E-mail:  jieouyang@nwpu.edu.cn

Cite this article: 

Wang Xiao-Dong (王晓东), Ouyang Jie (欧阳洁), Su Jin (苏进), Zhou Wen (周文) A phase-field model for simulating various spherulite morphologies of semi-crystalline polymers 2013 Chin. Phys. B 22 106103

[1] Taguchi K, Toda A and Miyamoto Y 2006 J. Macromal. Sci. B 45 1141
[2] Bassett D C and Vaughan A S 1985 Polymer 26 717
[3] Jin Y, Wang W and Su Z H 2011 Appl. Spectrosc. 65 454
[4] Gránásy L, Pusztai T and Warren J A 2004 J. Phys.: Condens. Matter 16 R1205
[5] Ketdee S and Anantawaraskul S 2008 Chem. Eng. Comm. 195 1315
[6] López J, Gómez P and Hernández J 2010 J. Comput. Phys. 229 6663
[7] Raabe1 D and Godara A 2005 Mater. Sci. Eng. 13 733
[8] Wendler F, Mennerich C and Nestler B 2011 J. Crystal Growth 327 189
[9] Zaeem M A, Yin H and Felicelli S D 2012 J. Mater. Sci. Technol. 28 137
[10] Gránásy L, Pusztai T, Tegze G, Warren J A and Douglas J F 2005 Phys. Rev. E 72 011605
[11] Wu K A and Voorhees P W 2012 Acta Mater. 60 407
[12] Kundin J, Siquieri R and Emmerich H 2013 Physica D 243 116
[13] Chen C, Chen Z, Zhang J, Yang T and Du X J 2012 Chin. Phys. B 21 118103
[14] Karma A and Rappel W J 1998 Phys. Rev. E 57 4323
[15] Xu H J, Matkar R and Kyu T 2005 Phys. Rev. E 72 011804
[16] Xu H J, Chiu H W, Okabe Y and Kyu T 2006 Phys. Rev. E 74 011801
[17] Warren J A and Boettinger W J 1995 Acta Metall. Mater. 43 689
[18] Kobayashi R, Warren J A and Carter W C 1998 Physica D 119 415
[19] Wang D, Shi T F, Chen J Z, An L J and Jia Y X 2008 J. Chem. Phys. 129 194903
[20] Kobayashi R 1993 Physica D 63 410
[21] Harrowell P R and Oxtoby D W 1987 J. Chem. Phys. 86 2932
[22] Hoffman J D and Weeks J J 1962 J. Res. Natl. Bur. Stand. A 66 13
[23] Zhou D, Shi A C and Zhang P W 2008 J. Chem. Phys. 129 154901
[24] Housmans J W, Peters G W M and Meijer H E H 2009 J. Therm. Anal. Calorim. 98 693
[25] Wang X D, Ouyang J and Su J 2010 Acta Phys. Sin. 59 6369 (in Chinese)
[26] Duan Y X, Zhang Y, Yan S K and Schultz J M 2005 Polymer 46 9015
[1] Simulation of single bubble dynamic process in pool boiling process under microgravity based on phase field method
Chang-Sheng Zhu(朱昶胜), Bo-Rui Zhao(赵博睿), Yao Lei(雷瑶), and Xiu-Ting Guo(郭秀婷). Chin. Phys. B, 2023, 32(4): 044702.
[2] Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method
Kang-Wei Wang(王康伟), Meng-Wu Wu(吴孟武), Bing-Hui Tian(田冰辉), and Shou-Mei Xiong(熊守美). Chin. Phys. B, 2022, 31(9): 098105.
[3] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[4] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[5] Phase-field modeling of faceted growth in solidification of alloys
Hui Xing(邢辉), Qi An(安琪), Xianglei Dong(董祥雷), and Yongsheng Han(韩永生). Chin. Phys. B, 2022, 31(4): 048104.
[6] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[7] Donor-acceptor conjugated copolymer with high thermoelectric performance: A case study of the oxidation process within chemical doping
Liangjun Chen(陈凉君), Wei Wang(王维), Shengqiang Xiao(肖生强), and Xinfeng Tang(唐新峰). Chin. Phys. B, 2022, 31(2): 028507.
[8] Recent progress in design of conductive polymers to improve the thermoelectric performance
Zhen Xu (徐真), Hui Li (李慧), and Lidong Chen(陈立东). Chin. Phys. B, 2022, 31(2): 028203.
[9] Structure design for high performance n-type polymer thermoelectric materials
Qi Zhang(张奇), Hengda Sun(孙恒达), and Meifang Zhu(朱美芳). Chin. Phys. B, 2022, 31(2): 028506.
[10] Variational approximation methods for long-range force transmission in biopolymer gels
Haiqin Wang(王海钦), and Xinpeng Xu(徐新鹏). Chin. Phys. B, 2022, 31(10): 104602.
[11] Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110)
Qi Zheng(郑琦), Li Huang(黄立), Deliang Bao(包德亮), Rongting Wu(武荣庭), Yan Li(李彦), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(1): 018202.
[12] Phase-field study of spinodal decomposition under effect of grain boundary
Ying-Yuan Deng(邓英远), Can Guo(郭灿), Jin-Cheng Wang(王锦程), Qian Liu(刘倩), Yu-Ping Zhao(赵玉平), and Qing Yang(杨卿). Chin. Phys. B, 2021, 30(8): 088101.
[13] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[14] Bilayer twisting as a mean to isolate connected flat bands in a kagome lattice through Wigner crystallization
Jing Wu(吴静), Yue-E Xie(谢月娥), Ming-Xing Chen(陈明星), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Sheng-Bai Zhang(张绳百), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2021, 30(7): 077104.
[15] Understanding the synergistic effect of mixed solvent annealing on perovskite film formation
Kun Qian(钱昆), Yu Li(李渝), Jingnan Song(宋静楠), Jazib Ali, Ming Zhang(张明), Lei Zhu(朱磊), Hong Ding(丁虹), Junzhe Zhan(詹俊哲), and Wei Feng(冯威). Chin. Phys. B, 2021, 30(6): 068103.
No Suggested Reading articles found!