Please wait a minute...
Chinese Physics, 2000, Vol. 9(4): 304-308    DOI: 10.1088/1009-1963/9/4/010
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

MAGNETIC PROPERTIES OF BALL MILLED FexCu1-x (x=0.4, 0.5) ALLOY

Li Yu-zhi (李玉芝)a, Lin lei (林磊)a, Wang Wang-chen (王汪陈)b, Xiong Cao-shui (熊曹水)b, Shen Bao-gen (沈保根)c

a Structure Research Laboratory, University of Science and Technology of China, Hefei 230026, China b Department of physics, University of Science and Technology of China, Hefei 230026, China;  c Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China;
Abstract  The samples Fe0.4Cu0.6 and Fe0.5Cu0.5 ball milled for 50 h are investigated by X-ray diffraction, Mo¨ssbauer spectra, as well as magnetic measurement. The experiments show that the structure of the samples is fcc, with lattice constant 0.361 nm and there are fcc Fe-rich phase and fcc Cu-rich phase in the samples. Most of Fe atoms (91%) are in the fcc Fe-rich phase, which is a ferromagnetic phase. The M-H curve at 1.5 K shows the saturation magnetization of the samples are 80.5 emu/g and 101.6 emu/g for Fe0.4Cu0.6 and Fe0.5Cu0.5 respectively. The average magnetic moment of Fe atoms is deduced to be 2.40 μB. Compared with theoretical predication, the Fe atoms in the fcc phase are in high spin state.
Received:  19 October 1999      Accepted manuscript online: 
PACS:  75.30.Cr (Saturation moments and magnetic susceptibilities)  
  75.50.Bb (Fe and its alloys)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  76.80.+y (M?ssbauer effect; other γ-ray spectroscopy)  

Cite this article: 

Li Yu-zhi (李玉芝), Lin lei (林磊), Wang Wang-chen (王汪陈), Xiong Cao-shui (熊曹水), Shen Bao-gen (沈保根) MAGNETIC PROPERTIES OF BALL MILLED FexCu1-x (x=0.4, 0.5) ALLOY 2000 Chinese Physics 9 304

[1] CrAlGe: An itinerant ferromagnet with strong tunability by heat treatment
Zhaokun Dong(董昭昆), Zhen Wang(王振), Te Zhang(张特), Junsen Xiang(项俊森), Shuai Zhang(张帅), Lihua Liu(刘丽华), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117502.
[2] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[3] High-frequency magnetic properties and core loss of carbonyl iron composites with easy plane-like structures
Guo-Wu Wang(王国武), Chun-Sheng Guo(郭春生), Liang Qiao(乔亮), Tao Wang(王涛), and Fa-Shen Li(李发伸). Chin. Phys. B, 2021, 30(2): 027504.
[4] Table-like shape magnetocaloric effect and large refrigerant capacity in dual-phase HoNi/HoNi2 composite
Dan Guo(郭丹), Yikun Zhang(张义坤)†, Yaming Wang(王雅鸣), Jiang Wang(王江), and Zhongming Ren(任忠鸣)‡. Chin. Phys. B, 2020, 29(10): 107502.
[5] Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition
Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar†. Chin. Phys. B, 2020, 29(10): 108503.
[6] High pressure synthesis and characterization of the pyrochlore Dy2Pt2O7: A new spin ice material
Qi Cui(崔琦), Yun-Qi Cai(蔡云麒), Xiang Li(李翔), Zhi-Ling Dun(顿志凌), Pei-Jie Sun(孙培杰), Jian-Shi Zhou(周建十), Hai-Dong Zhou(周海东), Jin-Guang Cheng(程金光). Chin. Phys. B, 2020, 29(4): 047502.
[7] Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces
Yaojin Li(李耀进), Vladimir Koval, Chenglong Jia(贾成龙). Chin. Phys. B, 2019, 28(9): 097501.
[8] Quaternary antiferromagnetic Ba2BiFeS5 with isolated FeS4 tetrahedra
Shaohua Wang(王少华), Xiao Zhang(张晓), Hechang Lei(雷和畅). Chin. Phys. B, 2019, 28(8): 087401.
[9] Random crystal field effect on hysteresis loops and compensation behavior of mixed spin-(1,3/2) Ising system
K Htoutou, Y Benhouria, A Oubelkacem, R Ahl laamara, L B Drissi. Chin. Phys. B, 2017, 26(12): 127501.
[10] Modified magnetomechancial model in the constant and low intensity magnetic field based on J–A theory
Qingyou Liu(刘清友), Xu Luo(罗旭), Haiyan Zhu(朱海燕), Jianxun Liu(刘建勋), Yiwei Han(韩一维). Chin. Phys. B, 2017, 26(7): 077502.
[11] Diverse features of magnetization curves of uniaxial crystals: A simulation study
Hala A. Sobh, Samy H. Aly. Chin. Phys. B, 2017, 26(1): 017503.
[12] Effect of exchange interaction in ferromagnetic superlattices: A Monte Carlo study
R Masrour, A Jabar. Chin. Phys. B, 2016, 25(10): 107502.
[13] Fabrication and magnetic properties of 4SC(NH2)2-Ni0.97Cu0.03Cl2 single crystals
Chen Li-Min (陈丽敏), Guo Ying (郭颖), Liu Xu-Guang (刘旭光), Xie Qi-Yun (解其云), Tao Zhi-Kuo (陶志阔), Chen Jing (谌静), Zhou Ling-Ling (周玲玲), Liu Chun-Sheng (刘春生). Chin. Phys. B, 2015, 24(12): 127503.
[14] Spin frustration and magnetic ordering in triangular lattice antiferromagnet Ca3CoNb2O9
Dai Jia (代佳), Zhou Ping (周萍), Wang Peng-Shuai (王朋帅), Pang Fei (庞斐), Tim J. Munsie, Graeme M. Luke, Zhang Jin-Shan (张金珊), Yu Wei-Qiang (于伟强). Chin. Phys. B, 2015, 24(12): 127508.
[15] Effects of R-site compositions on the meta-magnetic behavior of Tb1-xPrx(Fe0.4Co0.6)1.88C0.05 (x= 0, 0.8, and 1)
Huang Jun-Wei (黄俊伟), Xia Zheng-Cai (夏正才), Cheng Gang (成钢), Shi Li-Ran (时丽然), Jin Zhao (金昭), Shang Cui (尚翠), Wei Meng (魏蒙). Chin. Phys. B, 2015, 24(10): 107504.
No Suggested Reading articles found!