Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 077502    DOI: 10.1088/1674-1056/26/7/077502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Modified magnetomechancial model in the constant and low intensity magnetic field based on J–A theory

Qingyou Liu(刘清友)1,2, Xu Luo(罗旭)1, Haiyan Zhu(朱海燕)3, Jianxun Liu(刘建勋)1, Yiwei Han(韩一维)1
1 College of Mechatronic Engineering of Southwest Petroleum University, Chengdu 610500, China;
2 Key Laboratory of Fluid and Power Machinery(Ministry of Education), Xihua University, Chengdu 600300, China;
3 College of Petroleum Engineering of Southwest Petroleum University, Chengdu 610500, China
Abstract  The existing magnetomechancial models cannot explain the different experimental phenomena when the ferromagnetic specimen is respectively subjected to tension and compression stress in the constant and low intensity magnetic field, especially in the compression case. To promote the development of magnetomechancial theory, the energy conservation equation, effective magnetic field equation, and anhysteretic magnetization equation of the original Jiles–Atherton (J–A) theory are elucidated and modified, an equation of the local equilibrium status is employed and the differential expression of the modified magnetomechancial model based on the modified J–A theory is established finally. The effect of stress and plastic deformation on the magnetic parameters is analyzed. An excellent agreement is achieved between the theoretic predictions by the present modified model and the previous experimental results. Comparing with the calculation results given by the existing models and experimental results, it is seen indeed that the modified magnetomechanical model can describe the different magnetization features during tension-release and compression-release processes much better, and is the only one which can accurately reflect the experimental observation that the magnetic induction intensity reverses to negative value with the increase of the compressive stress and applied field.
Keywords:  modified Jiles–Atherton model      magnetomechanical effect      local equilibrium status  
Received:  12 December 2016      Revised:  01 April 2017      Accepted manuscript online: 
PACS:  75.80.+q (Magnetomechanical effects, magnetostriction)  
  62.20.F- (Deformation and plasticity)  
  75.30.Cr (Saturation moments and magnetic susceptibilities)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Fund: Project supported by the Major Program of Sichuan Province Science and Technology Plan,China (Grant No.2015SZ0010) and the Scientific Research Foundation of Sichuan Province,China (Grant No.2014GZ0121).
Corresponding Authors:  Xu Luo     E-mail:  402585133@qq.com

Cite this article: 

Qingyou Liu(刘清友), Xu Luo(罗旭), Haiyan Zhu(朱海燕), Jianxun Liu(刘建勋), Yiwei Han(韩一维) Modified magnetomechancial model in the constant and low intensity magnetic field based on J–A theory 2017 Chin. Phys. B 26 077502

[1] http://www.energodiagnostika.com/article-about-mmm-method.html (last accessed Nov. 18, 2016)
[2] Dubov A A 1997 Met. Sci. Heat. Treat. 39 401
[3] Dubov A A 2003 Therm. Eng. 50 935
[4] Leng J, Liu Y, Zhou G and Gao Y 2013 NDT & E Int. 55 42
[5] Wang Z D, Deng B and Yao K 2011 J. Appl. Phys. 109 083928
[6] Li J W, Xu M Q, Leng J C and Xu M X 2012 J. Appl. Phys. 111 063909
[7] Ahmad M I M, Arifin A, Abdullah S, Jusoh W Z W and Singh S S K 2015 Steel Compos. Sruct. 19 1549
[8] Bozorth R M and Williams H J 1945 Rev. Mod. Phys. 17 72
[9] Langman R 1985 IEEE Tran. Magn. 21 1314
[10] Kwun H and Burkhardt G L 1987 J. Appl. Phys. 61 1576
[11] Sablik M J, Kwun H, Burkhardt G L and Jiles D C 1987 J. Appl. Phys. 61 3799
[12] Jiles D C and Atherton D L 1984 J. Appl. Phys. 55 2115
[13] Jiles D C and Atherton D L 1986 J. Magn. Magn. Mater. 61 48
[14] Jiles D C 1992 IEEE Tran. Magn. 28 27
[15] Sablik M J, Rubin S W, Riley L A, Jiles D C, Kaminski D A and Biner S B 1993 J. Appl. Phys. 74 480
[16] Jiles D C 1995 J. Appl. Phys. 28 1537
[17] Sablik M J, Chen Y and Jiles D C 2000 AIP Conf. Proc. 509 3037
[18] Li L and Jiles D C 2003 J. Appl. Phys. 93 8480
[19] Li L and Jiles D C 2004 J. Appl. Phys. 95 5934
[20] Jiles D C 2000 J. Phys. D:Appl. Phys. 21 1196
[21] Sablik M J 2004 IEEE Trans. Magn. 40 3219
[22] Sablik M J, Geerts W J, Smith K, Gregory A and Moore C 2010 IEEE Trans. Magn. 46 491
[23] Lo C C H, Kinser E and Jiles D C 2003 J. Appl. Phys. 93 6626
[24] Suliga M, Borowik L and Chwastek K 2015 Arch. Metall. Mater. 60 409
[25] Atherton D L and Ton V 1990 IEEE Trans. Magn. 26 1153
[26] Makar J M and Atherton D L 1995 IEEE Trans. Magn. 31 2220
[27] Xu M X, Xu M Q and Li J W 2011 NDT & E 27 1
[28] Jiles D C 1994 J. Appl. Phys. 76 5849
[29] https://www.researchgate.net/publication/265264412 (last accessed Nov. 18, 2016)
[30] Chwastek K and Szczyglowski 2008 Prz Elektrotechniczn 84 145
[31] Bao S, Jin W L, Huang M F and Bai Y 2010 NDT & E Int. 43 706
[32] Craik D J and Wood M J 1970 J. Phys. D:Appl. Phys. 3 1009
[1] Magnetostriction and spin reorientation in ferromagnetic Laves phase Pr(GaxFe1-x)1.9 compounds
Min-Yu Zeng(曾敏玉), Qing Tang(唐庆), Zhi-Wei Mei(梅志巍), Cai-Yan Lu(陆彩燕), Yan-Mei Tang(唐妍梅), Xiang Li(李翔), Yun He(何云), and Ze-Ping Guo(郭泽平). Chin. Phys. B, 2021, 30(6): 067504.
[2] Influence of Tb on easy magnetization direction and magnetostriction of PrFe1.9 alloy
Chang-Xuan He(何昌璇), Yan-Mei Tang(唐妍梅), Xiang Li(李翔), Yun He(何云), Cai-Yan Lu(陆彩燕), Ze-Ping Guo(郭泽平). Chin. Phys. B, 2019, 28(11): 117501.
[3] Magneto optics and time resolved terahertz spectrocopy
T Dong(董涛), Z G Chen(谌志国), N L Wang(王楠林). Chin. Phys. B, 2018, 27(7): 077501.
[4] Multiple broadband magnetoelectric response in Terfenol-D/PZT structure
Jian-Biao Wen(文建彪), Juan-Juan Zhang(张娟娟), Yuan-Wen Gao(高原文). Chin. Phys. B, 2018, 27(2): 027702.
[5] Multiferroic and enhanced microwave absorption induced by complex oxide interfaces
Cuimei Cao(曹翠梅), Chunhui Dong(董春晖), Jinli Yao(幺金丽), Changjun Jiang(蒋长军). Chin. Phys. B, 2018, 27(1): 017503.
[6] Low temperature magnetic and magnetostrictive properties in Pr(Fe1-xCox)1.9 cubic Laves alloys
Yan-Mei Tang(唐妍梅), Hang-Yu Xu(徐行祤), Ye Huang(黄业), Zhi-Xiong Tang(唐志雄), Shao-Long Tang(唐少龙). Chin. Phys. B, 2017, 26(12): 127502.
[7] Giant low-frequency magnetoelectric torque (MET) effect in polyvinylidene-fluoride (PVDF)-based MET device
Chun-Lei Zheng(郑春蕾), Yi-Wei Liu(刘宜伟), Qing-Feng Zhan(詹清峰), Yuan-Zhao Wu(巫远招), Run-Wei Li(李润伟). Chin. Phys. B, 2017, 26(6): 067703.
[8] Modeling of the loading path dependent magnetomechanical behavior of Galfenol alloy
Hui Jiang(江慧), Jie Zhu(朱洁). Chin. Phys. B, 2017, 26(3): 037503.
[9] Dy substitution effect on the temperature dependences of magnetostriction in Pr1-xDyxFe1.9 alloys
Yan-Mei Tang(唐妍梅), Hai-Fu Huang(黄海富), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2016, 25(11): 117503.
[10] Influence of Tb on easy magnetization direction and magnetostriction of ferromagnetic Laves phase GdFe2 compounds
Adil Murtaza, Sen Yang(杨森), Chao Zhou(周超), Xiaoping Song(宋晓平). Chin. Phys. B, 2016, 25(9): 096107.
[11] Al-doping-induced magnetocapacitance in the multiferroic AgCrS2
Liu Rong-Deng (刘荣灯), He Lun-Hua (何伦华), Yan Li-Qin (闫丽琴), Wang Zhi-Cui (王志翠), Sun Yang (孙阳), Liu Yun-Tao (刘蕴韬), Chen Dong-Feng (陈东风), Zhang Sen (张森), Zhao Yong-Gang (赵永刚), Wang Fang-Wei (王芳卫). Chin. Phys. B, 2015, 24(12): 127507.
[12] Equivalent circuit model including magnetic and thermo sources for the thermo–magneto–electric coupling effect in magnetoelectric laminates
Cui Xiao-Le (崔晓乐), Zhou Hao-Miao (周浩淼). Chin. Phys. B, 2015, 24(7): 077506.
[13] Quantitative calculations of polarizations arising from the symmetric and antisymmetric exchange strictions in Tm-doped GdMnO3
Qin Ming-Hui (秦明辉), Lin Lin (林林), Li Lin (李林), Jia Xing-Tao (贾兴涛), Liu Jun-Ming (刘俊明). Chin. Phys. B, 2015, 24(3): 037509.
[14] Theoretical study of mutual control mechanism between magnetization and polarization in multiferroic materials
Liu Yu (刘宇), Zhai Liang-Jun (翟良君), Wang Huai-Yu (王怀玉). Chin. Phys. B, 2015, 24(3): 037510.
[15] Modelling self-sensing of a magnetostrictive actuator based on a terfenol-D rod
Yan Bai-Ping (严柏平), Zhang Cheng-Ming (张成明), Li Li-Yi (李立毅), Tang Zhi-Feng (唐志峰), Lü Fu-Zai (吕福在), Yang Ke-Ji (杨克己). Chin. Phys. B, 2014, 23(12): 127504.
No Suggested Reading articles found!