Please wait a minute...
Chinese Physics, 2000, Vol. 9(4): 284-289    DOI: 10.1088/1009-1963/9/4/007
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

CHARACTERIZATION OF POLYCRYSTALLINE GRADIENT THIN FILM BY X-RAY DIFFRACTION METHOD

Li Bin (李彬), Tao Kun (陶琨), Liu Xing-tao (刘兴涛), Miao Wei (苗伟), Feng Tao (冯涛), Yang Ning (杨宁), Liu Bai-xin (柳百新)
Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Abstract  A direct method is proposed to quantitatively characterize the structural depth profiles emerged in the polycrystalline thin films based on the information obtained by X-ray diffraction (XRD) with various incident angles and treated by a numerical procedure known as the constrained linear inversion. It should be noted that the proposed method was neither sensitive to the random noise appearing in experiment nor to the error originated from the measured thickness of the specimen. To testify the validity of the method, XRD measurements were carried out on a specially designed Pd/Ag bilayer sample, which was annealed at 490℃ for 20 min, and the depth profiles were accordingly calculated through resolving the obtained XRD patterns. The elemental concentration depth profile of the Pd/Ag bilayer sample was in turn calculated from the resolved patterns, which was in good agreement with those obtained by Auger electron analysis on the annealed sample.
Received:  22 August 1999      Accepted manuscript online: 
PACS:  61.05.cp (X-ray diffraction)  
  68.55.-a (Thin film structure and morphology)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 59471066).

Cite this article: 

Li Bin (李彬), Tao Kun (陶琨), Liu Xing-tao (刘兴涛), Miao Wei (苗伟), Feng Tao (冯涛), Yang Ning (杨宁), Liu Bai-xin (柳百新) CHARACTERIZATION OF POLYCRYSTALLINE GRADIENT THIN FILM BY X-RAY DIFFRACTION METHOD 2000 Chinese Physics 9 284

[1] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[2] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[3] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[4] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[5] Structural, magnetic properties, critical behaviors and magnetic entropy changes of La0.7-xGdxCa0.3MnO3 (x = 0,0.05,0.1) manganites
Min Zhou(周敏), Xiang Jin(金香), Wen-Xing Wang(王文星), Lin Zheng(郑琳),Ru Xing(邢茹), Yi Lu(鲁毅), and Jian-Jun Zhao(赵建军). Chin. Phys. B, 0, (): 66102-066102.
[6] Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands
Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲). Chin. Phys. B, 2022, 31(4): 046501.
[7] High-energy x-ray diffraction study on phase transition asymmetry of plastic crystal neopentylglycol
Zhe Zhang(张哲), Yan-Na Chen(陈艳娜), Ji Qi(齐迹), Zhao Zhang(张召), Koji Ohara, Osami Sakata, Zhi-Dong Zhang(张志东), and Bing Li(李昺). Chin. Phys. B, 2022, 31(3): 036802.
[8] Pressure dependence of the thermal stability in LiMn2O4
Yan Zeng(曾彦), Hao Liang(梁浩), Shixue Guan(管诗雪), Junpu Wang(王俊普), Wenjia Liang(梁文嘉), Mengyang Huang(黄梦阳), and Fang Peng(彭放). Chin. Phys. B, 2022, 31(1): 016104.
[9] Analytical solution of crystal diffraction intensity
Wan-Li Shang(尚万里), Ao Sun(孙奥), Hua-Bin Du(杜华冰), Guo-Hong Yang(杨国洪), Min-Xi Wei(韦敏习), Xu-Fei Xie(谢旭飞), Xing-Sen Che(车兴森), Li-Fei Hou(侯立飞), Wen-Hai Zhang(张文海), Miao Li(黎淼), Jun Shi(施军), Feng Wang(王峰), Hai-En He(何海恩), Jia-Min Yang(杨家敏), Shao-En Jiang(江少恩), and Bao-Han Zhang(张保汉). Chin. Phys. B, 2021, 30(11): 116101.
[10] LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy): Heavy lanthanides on spin-1/2 kagome magnets
Ying Fu(付盈), Lianglong Huang(黄良龙), Xuefeng Zhou(周雪峰), Jian Chen(陈见), Xinyuan Zhang(张馨元), Pengyun Chen(陈鹏允), Shanmin Wang(王善民), Cai Liu(刘才), Dapeng Yu(俞大鹏), Hai-Feng Li(李海峰), Le Wang(王乐), and Jia-Wei Mei(梅佳伟). Chin. Phys. B, 2021, 30(10): 100601.
[11] Doping effect on the structure and physical properties of quasi-one-dimensional compounds Ba9Co3(Se1-xSx)15 (x = 0-0.2)
Lei Duan(段磊), Xian-Cheng Wang(望贤成), Jun Zhang(张俊), Jian-Fa Zhao(赵建发), Wen-Min Li(李文敏), Li-Peng Cao(曹立朋), Zhi-Wei Zhao(赵志伟), Changjiang Xiao(肖长江), Ying Ren(任瑛), Shun Wang(王顺), Jinlong Zhu(朱金龙), and Chang-Qing Jin(靳常青). Chin. Phys. B, 2021, 30(10): 106101.
[12] Powder x-ray diffraction and Rietveld analysis of (C2H5NH3)2CuCl4
Yi Liu(刘义), Jun Shen(沈俊), Zunming Lu(卢遵铭), Baogen Shen(沈保根), and Liqin Yan(闫丽琴). Chin. Phys. B, 2021, 30(6): 067502.
[13] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[14] Effect of source temperature on phase and metal–insulator transition temperature of vanadium oxide films grown by atomic layer deposition
Bingheng Meng(孟兵恒), Dengkui Wang(王登魁)†, Deshuang Guo(郭德双), Juncheng Liu(刘俊成), Xuan Fang(方铉), Jilong Tang(唐吉龙), Fengyuan Lin(林逢源), Xinwei Wang(王新伟), Dan Fang(房丹), and Zhipeng Wei(魏志鹏)‡. Chin. Phys. B, 2020, 29(10): 107102.
[15] Grain size and structure distortion characterization of α-MgAgSb thermoelectric material by powder diffraction
Xiyang Li(李西阳), Zhigang Zhang(张志刚), Lunhua He(何伦华), Maxim Avdeev, Yang Ren(任洋), Huaizhou Zhao(赵怀周), and Fangwei Wang(王芳卫)†. Chin. Phys. B, 2020, 29(10): 106101.
No Suggested Reading articles found!