Please wait a minute...
Chinese Physics, 2000, Vol. 9(3): 175-179    DOI: 10.1088/1009-1963/9/3/004
GENERAL Prev   Next  

CHAOTIC SOLITON IN COUPLED LONG JOSEPHSON JUNCTIONS

Hai Wen-hua (海文华)a, Liu Xi-chun (刘习春)a, Fang Jian-shu (方见树)ab, Huang Wei-li (黄卫立)a, Zhang Xi-li (张细利)a
a Department of Physics, Hunan Normal University, Changsha 410081, China; b Department of Physics, Zhuzhou Teacher's College, Hunan 412001, China
Abstract  The interaction between soliton and sinusoidal wave in two weakly coupled long Josephson junctions is studied. Theoretical analysis reveals that the soliton may be embedded in Melnikov chaotic attractors and the Fiske-step-modes are implied in the boundedness condition of the system. Comparison between the chaotic soliton oscillators and synchronized soliton oscillators shows that the former possesses greater maximal velocity and energy.
Received:  11 July 1999      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Yv (Solitons)  
  85.25.Cp (Josephson devices)  
Fund: Project supported by the Science Foundation of Educational Committee of Hunan Province of China, and the National Natural Science Foundation of China (Grant No. 19775013).

Cite this article: 

Hai Wen-hua (海文华), Liu Xi-chun (刘习春), Fang Jian-shu (方见树), Huang Wei-li (黄卫立), Zhang Xi-li (张细利) CHAOTIC SOLITON IN COUPLED LONG JOSEPHSON JUNCTIONS 2000 Chinese Physics 9 175

[1] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[2] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[3] Spin transfer nano-oscillator based on synthetic antiferromagnetic skyrmion pair assisted by perpendicular fixed magnetic field
Yun-Xu Ma(马云旭), Jia-Ning Wang(王佳宁), Zhao-Zhuo Zeng(曾钊卓), Ying-Yue Yuan(袁映月), Jin-Xia Yang(杨金霞), Hui-Bo Liu(刘慧博), Sen-Fu Zhang(张森富), Jian-Bo Wang(王建波), Chen-Dong Jin(金晨东), and Qing-Fang Liu(刘青芳). Chin. Phys. B, 2022, 31(10): 100501.
[4] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[5] Improved functional-weight approach to oscillatory patterns in excitable networks
Tao Li(李涛), Lin Yan(严霖), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2022, 31(9): 090502.
[6] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[7] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[8] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[9] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[10] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[11] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[12] Explosive synchronization of multi-layer complex networks based on inter-layer star network connection
Yan-Liang Jin(金彦亮), Run-Zhu Guo(郭润珠), Xiao-Qi Yu(于晓琪), and Li-Quan Shen(沈礼权). Chin. Phys. B, 2021, 30(12): 120505.
[13] Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay
Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Chin. Phys. B, 2021, 30(12): 120503.
[14] Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control
Karthikeyan Rajagopal, Anitha Karthikeyan, and Balamurali Ramakrishnan. Chin. Phys. B, 2021, 30(12): 120512.
[15] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
No Suggested Reading articles found!