Please wait a minute...
Acta Physica Sinica (Overseas Edition), 1999, Vol. 8(7): 503-513    DOI: 10.1088/1004-423X/8/7/005
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

PHYSICAL CHARACTERISTICS OF ELECTROMAGNETIC LEVITATION PROCESSING

Wang Nan (王楠), Xie Wen-jun (解文军), Wei Bing-bo (魏炳波)
Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  Electromagnetic levitation has developed from a pure physical phenomenon into a practical containerless processing technique in the fields of both applied physics and materials science. In order to obtain a better understanding of this processing technique, two typical levitation coils were designed and the physical characteristics in levitation droplets suspended in these two coils, such as electromangetic field, levitation force field, total levitation force, and power absorption, were analyzed numerically and calculated in this paper. It was found that the eddy current density, together with the magnetic flux density and levitation force density, increases rapidly with radius as it approaches sample surface. The maximum levitation force produced by coil A is larger than that of coil B, whereas the levitated sample can obtain less power absorption at the equilibrium position in the former coil than that in the latter one. Moreover, the calculated results also demonstrated that the levitation ability decreases as the atomic number increases. The larger the material's electrical resistivity, the easier the samples can obtain more power absorption.
Received:  04 December 1998      Accepted manuscript online: 
PACS:  41.20.-q (Applied classical electromagnetism)  
  84.32.Hh (Inductors and coils; wiring)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 59425002) and by the National High Technology Program (Grant No. 863-2-4-3-2).

Cite this article: 

Wang Nan (王楠), Xie Wen-jun (解文军), Wei Bing-bo (魏炳波) PHYSICAL CHARACTERISTICS OF ELECTROMAGNETIC LEVITATION PROCESSING 1999 Acta Physica Sinica (Overseas Edition) 8 503

[1] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[2] Electrostatic force of dust deposition originating from contact between particles and photovoltaic glass
Xing-Cai Li(李兴财), Juan Wang(王娟), and Guo-Qing Su(苏国庆). Chin. Phys. B, 2021, 30(10): 104101.
[3] Wideband radar cross section reduction based on absorptive coding metasurface with compound stealth mechanism
Xinmi Yang(杨歆汨), Changrong Liu(刘昌荣), Bo Hou(侯波), and Xiaoyang Zhou(周小阳). Chin. Phys. B, 2021, 30(10): 104102.
[4] Shared aperture metasurface antenna for electromagnetic vortices generation with different topological charges
He Wang(王贺), Yong-Feng Li(李勇峰), and Shao-Bo Qu(屈绍波). Chin. Phys. B, 2021, 30(8): 084101.
[5] Factors influencing electromagnetic scattering from the dielectric periodic surface
Yinyu Wei(韦尹煜), Zhensen Wu(吴振森), Haiying Li(李海英), Jiaji Wu(吴家骥), Tan Qu(屈檀). Chin. Phys. B, 2019, 28(7): 074101.
[6] Modified physical optics algorithm for near field scattering
Bin Chen(陈彬), Chuangming Tong(童创明). Chin. Phys. B, 2018, 27(11): 114102.
[7] Reliable approach for bistatic scattering of three-dimensional targets from underlying rough surface based on parabolic equation
Dong-Min Zhang(张东民), Cheng Liao(廖成), Liang Zhou(周亮), Xiao-Chuan Deng(邓小川), Ju Feng(冯菊). Chin. Phys. B, 2018, 27(7): 074102.
[8] General series expression of eddy-current impedance for coil placed above multi-layer plate conductor
Yin-Zhao Lei(雷银照). Chin. Phys. B, 2018, 27(6): 060308.
[9] Optimization of endcap trap for single-ion manipulation
Yuan Qian(钱源), Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Ke-Lin Gao(高克林). Chin. Phys. B, 2018, 27(6): 063701.
[10] Analytical model of tilted driver-pickup coils for eddy current nondestructive evaluation
Bing-Hua Cao(曹丙花), Chao Li(李超), Meng-Bao Fan(范孟豹), Bo Ye(叶波), Gui-Yun Tian(田贵云). Chin. Phys. B, 2018, 27(3): 030301.
[11] Detection of meso-micro scale surface features based on microcanonical multifractal formalism
Yuanyuan Yang(杨媛媛), Wei Chen(陈伟), Tao Xie(谢涛), William Perrie. Chin. Phys. B, 2018, 27(1): 010502.
[12] Variations in defect substructure and fracture surface of commercially pure aluminum under creep in weak magnetic field
Sergey Konovalov, Dmitry Zagulyaev, Xi-Zhang Chen(陈希章), Victor Gromov, Yurii Ivanov. Chin. Phys. B, 2017, 26(12): 126203.
[13] Reduced technique for modeling electromagnetic immunity on braid shielding cable bundles
Pei Xiao(肖培), Ping-An Du(杜平安), Bao-Lin Nie(聂宝林), Dan Ren(任丹). Chin. Phys. B, 2017, 26(9): 094102.
[14] Binding energy of the donor impurities in GaAs-Ga1-xAlxAs quantum well wires with Morse potential in the presence of electric and magnetic fields
Esra Aciksoz, Orhan Bayrak, Asim Soylu. Chin. Phys. B, 2016, 25(10): 100302.
[15] The 650-nm variable optical attenuator based on polymer/silica hybrid waveguide
Yue-Yang Yu(于跃洋), Xiao-Qiang Sun(孙小强), Lan-Ting Ji(姬兰婷), Guo-Bing He(何国冰), Xi-Bin Wang(王希斌), Yun-Ji Yi(衣云骥), Chang-Ming Chen(陈长鸣), Fei Wang(王菲), Da-Ming Zhang(张大明). Chin. Phys. B, 2016, 25(5): 054101.
No Suggested Reading articles found!