Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 126203    DOI: 10.1088/1674-1056/26/12/126203
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Variations in defect substructure and fracture surface of commercially pure aluminum under creep in weak magnetic field

Sergey Konovalov1,2, Dmitry Zagulyaev3, Xi-Zhang Chen(陈希章)1,2, Victor Gromov3, Yurii Ivanov4
1. Samara National Research University, Samara 443086, Russia;
2. Wenzhou University, Wenzhou 325035, China;
3. Siberian State Industrial University Novokuznetsk, 654007, Russia;
4. Institute of High Current Electronics of the Siberian Branch of the Russia Academy of Sciences, Tomsk 634055, Russia
Abstract  Commercially pure polycrystalline aluminum of grade A85, as a test material, is investigated. Using scanning and transmission electron microscopy the aluminum fine structure and fracture surface are analyzed. Fractures are studied in the regime of creep with and without a simultaneous effect of 0.3-T magnetic field. It is found that the application of a magnetic field in a linear stage of creep leads to substructure imperfection increasing. Furthermore, the magnetic field effect on aluminum in the process of creep causes the average scalar density of dislocations to increase and induces the process of dislocation loop formation to strengthen. Fractographic investigation of the fracture surface shows that in the fibrous fracture zone the average size of plastic fracture pits decreases more than twice under creep in the condition of external magnetic field compared with in the conventional experimental condition. In a shear zone, the magnetic field causes the average size of fracture pits to decrease. Experimental data obtained in the research allow us to conclude that the magnetic field effect on aluminum in the process of creep leads to the fracture toughness value of the material decreasing, which will affect the state of defect substructure of the volume and surface layer of the material. The influence of the magnetic field is analyzed on the basis of the magneto-plasticity effect.
Keywords:  aluminum      magnetic field      creep      structure  
Received:  10 August 2017      Revised:  23 August 2017      Accepted manuscript online: 
PACS:  62.20.Hg (Creep)  
  61.72.Lk (Linear defects: dislocations, disclinations)  
  41.20.-q (Applied classical electromagnetism)  
  68.37.Hk (Scanning electron microscopy (SEM) (including EBIC))  
Fund: Project supported by the Ministry of Education and Science of Russian Federation (State Task No. 3.1283.2017/4.6).
Corresponding Authors:  Xi-Zhang Chen     E-mail:  chenxizhang@wzu.edu.cn

Cite this article: 

Sergey Konovalov, Dmitry Zagulyaev, Xi-Zhang Chen(陈希章), Victor Gromov, Yurii Ivanov Variations in defect substructure and fracture surface of commercially pure aluminum under creep in weak magnetic field 2017 Chin. Phys. B 26 126203

[1] Sahin O and Ucar N 2006 Chin. Phys. Lett. 23 3037
[2] Wang H M, Zhu Y, Li G R and Zheng R 2016 Acta Phys. Sin. 65 146101(in Chinese)
[3] Zuo X W, An B L, Huang D Y, Zhang L and Wang E G 2016 Acta Phys. Sin. 65 137401(in Chinese)
[4] Li G R, Xue F, Wang H M, Zheng R, Zhu Y, Chu Q Z and Cheng J F 2016 Chin. Phys. B 25 106201
[5] Aciksoz E, Soylu A and Bayrak O 2016 Chin. Phys. B 25 100302
[6] Liu Y J, Lin Z Q and Wang J F 2016 Physics 45 19(in Chinese)
[7] Peng T and Li L 2016 Physics 45 11(in Chinese)
[8] Golovin Y I 2004 Phys. Solid State 46 789
[9] Konovalov S V, Zagulyaev D V, Yaropolova N G, Komissarova I A, Ivanov Y F and Gromov V E 2015 Russ. J. Non-Ferrous Met. 56 441
[10] Zagulyaev D V, Konovalov S V, Yaropolova N G, Ivanov Y F, Komissarova I A and Gromov V E 2015 J. Surf. Investig. X-Ray, Synchrotron Neutron Tech. 9 410
[11] Zagulyaev D V, Konovalov S V, Litvinenko N G, Komissarova I A and Gromov V E 2013 Tsvetnye Met. 4 74
[12] Alshits V I, Darinskaya E V, Koldaeva M V and Petrzhik E A 2003 Crystallography Reports 48 768
[13] Alshits V I, Urusovskaya A A, Smirnov A E and Bekkauer N N 2000 Phys. Solid State 42 277
[14] Li G R, Wang F F, Wang H M, Zheng R, Xue F and Cheng J F 2017 Chin. Phys. B 26 046201
[15] Jin Z and Sun C T 2012 Fracture Mechanics (Elsevier Inc.)
[16] Golovin Y I 2004 J. Mater. Sci. 39 5129
[17] Pinchook A I and Shavrei S D 2002 Technical Physics Letters 28 525
[18] Shavrei S D and Pinchook A I 2003 Technical Physics Letters 29 632
[19] Pinchuk A I and Shavrei S D 2001 Phys. Solid State 43 39
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[4] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[5] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[6] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[7] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[8] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[9] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[10] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[11] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[12] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[13] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[14] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[15] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
No Suggested Reading articles found!