Please wait a minute...
Acta Physica Sinica (Overseas Edition), 1999, Vol. 8(12): 932-937    DOI: 10.1088/1004-423X/8/12/009
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

GROWTH MODEL OF TEXTURED DIAMOND (111) FILM IN CH4/O2/H2 ATMOSPHERE

WU JIN (武瑾)1, XIE FANG-QING (谢仿卿)1, ZHANG QING-ZHE (张青哲)1, LIU JI-WEN (刘技文)2, CHEN YOU-CUN (陈有存)1, LIN ZHANG-DA (林彰达)1
1 State Key Laboratory of Surface Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China;
2 College of Material Science and Engineering, Tianjin University, Tianjin 300092, China
Abstract  Partially oriented and highly textured diamond films on Si( 111 ) substrates were achieved by hot-filament chemical vapor deposition(HFCVD). High nucleation density greater than 5×108cm-2 was realiged in 3 min by near-surface glow discharge. The os-grown films were characterized by scanning electron microscopy(SEM), X-ray diffraction(XRD) and Raman spectroscopy. It was found that by adding a small amount of oxygen to the mixture of CH4/H2, the appearance of facet(111) was well controlled, and the secondary nucleation on the facet(111) was suppressed greatly. Growth feature of homoepitaxy on diamond (111) surface was demonstrated to be in Stranski-Krastanov model by SEM.
Received:  29 April 1999      Accepted manuscript online: 
PACS:  68.55.A- (Nucleation and growth)  
  68.47.Fg (Semiconductor surfaces)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  52.80.Hc (Glow; corona)  
  68.37.Hk (Scanning electron microscopy (SEM) (including EBIC))  
  78.30.Am (Elemental semiconductors and insulators)  
Fund: Project supported by the National Natural Science Foundation of China(Grant No.59632010)

Cite this article: 

WU JIN (武瑾), XIE FANG-QING (谢仿卿), ZHANG QING-ZHE (张青哲), LIU JI-WEN (刘技文), CHEN YOU-CUN (陈有存), LIN ZHANG-DA (林彰达) GROWTH MODEL OF TEXTURED DIAMOND (111) FILM IN CH4/O2/H2 ATMOSPHERE 1999 Acta Physica Sinica (Overseas Edition) 8 932

[1] Suppression of ice nucleation in supercooled water under temperature gradients
Li-Ping Wang(王利平), Wei-Liang Kong(孔维梁), Pei-Xiang Bian(边佩翔), Fu-Xin Wang(王福新), and Hong Liu(刘洪). Chin. Phys. B, 2021, 30(6): 068203.
[2] A low-dimensional crystal growth model on an isotropic and quasi-free sustained substrate
Chenxi Lu(卢晨曦), Senjiang Yu(余森江), Lingwei Li(李领伟), Bo Yang(杨波), Xiangming Tao(陶向明), Gaoxiang Ye(叶高翔). Chin. Phys. B, 2020, 29(3): 038101.
[3] Segregation behavior and embrittling effect of lanthanide La, Ce, Pr, and Nd at Σ3(111) tilt symmetric grain boundary in α-Fe
Jinli Cao(曹金利), Wen Yang(杨文), Xinfu He(贺新福). Chin. Phys. B, 2019, 28(12): 126802.
[4] Segregations and desorptions of Ge atoms in nanocomposite Si1-xGex films during high-temperature annealing
Yu Wang(汪煜), Meng Yang(杨濛), Gang Wang(王刚), Xiao-Xu Wei(魏晓旭), Jun-Zhuan Wang(王军转), Yun Li(李昀), Ze-Wen Zou(左则文), You-Dou Zheng(郑有炓), Yi Shi(施毅). Chin. Phys. B, 2017, 26(12): 126801.
[5] Structural, optical, and electrical properties of Cu-doped ZrO2 films prepared by magnetron co-sputtering
Nian-Qi Yao(姚念琦), Zhi-Chao Liu(刘智超), Guang-Rui Gu(顾广瑞), Bao-Jia Wu(吴宝嘉). Chin. Phys. B, 2017, 26(10): 106801.
[6] Effects of the Be22W phase formation on hydrogen retention and blistering in mixed Be/W systems
Jin-Li Cao(曹金利), Bing-Ling He(赫丙龄), Wei Xiao(肖伟), Li-Gen Wang(王立根). Chin. Phys. B, 2017, 26(7): 076801.
[7] First-principles study of He trapping in η-Fe2C
Bing-Ling He(赫丙玲), Jin-Long Wang(王金龙), Zhi-Xue Tian(田之雪), Li-Juan Jiang(蒋利娟), Wei Song(宋薇), Bin Wang(王斌). Chin. Phys. B, 2016, 25(11): 116801.
[8] Thick c-BN films deposited by radio frequency magnetron sputtering in argon/nitrogen gas mixture with additional hydrogen gas
Yan Zhao(赵艳), Wei Gao(高伟), Bo Xu(徐博), Ying-Ai Li(李英爱), Hong-Dong Li(李红东), Guang-Rui Gu(顾广瑞), Hong Yin(殷红). Chin. Phys. B, 2016, 25(10): 106801.
[9] Transient liquid assisted nucleation mechanism of YBa2Cu3O7-δ in coated conductor films derived by BaF2 process
Gu Zhao-Hui (谷朝辉), Yang Wen-Tao (杨文涛), Bai Chuan-Yi (白传易), Guo Yan-Qun (郭艳群), Lu Yu-Ming (鲁玉明), Liu Zhi-Yong (刘志勇), Lu Qi (路齐), Shu Gang-Qiang (舒刚强), Cai Chuan-Bing (蔡传兵). Chin. Phys. B, 2015, 24(9): 096805.
[10] Growth mechanism and modification of electronic and magnetic properties of silicene
Liu Hong-Sheng (柳洪盛), Han Nan-Nan (韩楠楠), Zhao Ji-Jun (赵纪军). Chin. Phys. B, 2015, 24(8): 087303.
[11] Effect of the thickness of InGaN interlayer on a-plane GaN epilayer
Wang Jian-Xia (王建霞), Wang Lian-Shan (汪连山), Zhang Qian (张谦), Meng Xiang-Yue (孟祥岳), Yang Shao-Yan (杨少延), Zhao Gui-Juan (赵桂娟), Li Hui-Jie (李辉杰), Wei Hong-Yuan (魏鸿源), Wang Zhan-Guo (王占国). Chin. Phys. B, 2015, 24(2): 026802.
[12] Effects of growing conditions on the electric and magnetic properties of strained La2/3Sr1/3MnO3 thin films
Lu Hai-Xia (卢海霞), Wang Jing (王晶), Shen Bao-Gen (沈保根), Sun Ji-Rong (孙继荣). Chin. Phys. B, 2015, 24(2): 027504.
[13] Preparation and characterization of thick cubic boron nitride films
Wang Ming-E (王明娥), Ma Guo-Jia (马国佳), Dong Chuang (董闯), Gong Shui-Li (巩水利). Chin. Phys. B, 2014, 23(6): 066805.
[14] Structural and electrical characterization of annealed Si1-xCx/SiC thin film prepared by magnetron sputtering
Huang Shi-Hua (黄仕华), Liu Jian (刘剑). Chin. Phys. B, 2014, 23(5): 058105.
[15] Effects of V/Ⅲ ratio on a-plane GaN epilayers with an InGaN interlayer
Wang Jian-Xia (王建霞), Wang Lian-Shan (汪连山), Yang Shao-Yan (杨少延), Li Hui-Jie (李辉杰), Zhao Gui-Juan (赵桂娟), Zhang Heng (张恒), Wei Hong-Yuan (魏鸿源), Jiao Chun-Mei (焦春美), Zhu Qin-Sheng (朱勤生), Wang Zhan-Guo (王占国). Chin. Phys. B, 2014, 23(2): 026801.
No Suggested Reading articles found!