Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 117302    DOI: 10.1088/1674-1056/ae0396
RAPID COMMUNICATION Prev   Next  

Electron doping in FeSe monolayer and multilayer via metal phthalocyanine adsorption: A first-principles investigation

Fangyu Yang(杨方玉)1,2, Yan-Fang Zhang(张艳芳)1,2, Peixuan Li(李佩璇)1,2, and Shixuan Du(杜世萱)1,2,3,†
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China;
3 Songshan Lake Material Laboratory, Dongguan 523808, China
Abstract  Electron doping has been established as an effective method to enhance the superconducting transition temperature and superconducting energy gap of FeSe thin films on strontium titanate (SrTiO3) substrates. Previous studies have demonstrated that electron/hole doping can be achieved through the adsorption of metal phthalocyanine (MPc, M = Co, Cu, Mn, Fe, and Ni) molecules on surfaces. This work explores the electron doping induced by the adsorption of MPc molecules, specifically cobalt phthalocyanine (CoPc) and copper phthalocyanine (CuPc), onto FeSe monolayer and multilayers. Utilizing first-principles calculations based on density functional theory, we demonstrate that charge rearrangement occurs when MPc molecules adsorb on the FeSe substrate, contributing to an accumulation of electrons at the interface. In the CoPc/FeSe systems, the electron accumulation increases with the layer number of FeSe substrate, converging for substrates with 3–5 layers. The analysis of the integrated planar charge difference up to the position with zero integrated charge transfer reveals that all the five MPc molecules donate electrons to the uppermost FeSe layer. The electron donation suggests that MPc adsorption can be a promising strategy to modulate the superconductivity of FeSe layers.
Keywords:  metal-phthalocyanine      multilayer FeSe      electron doping      interfaces  
Received:  16 June 2025      Revised:  20 August 2025      Accepted manuscript online:  05 September 2025
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
  73.40.-c (Electronic transport in interface structures)  
  98.38.Am (Physical properties (abundances, electron density, magnetic fields, scintillation, scattering, kinematics, dynamics, turbulence, etc.))  
Fund: We acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 62488201) and the National Key Research and Development Program of China (Grant No. 2022YFA1204100).
Corresponding Authors:  Shixuan Du     E-mail:  sxdu@iphy.ac.cn

Cite this article: 

Fangyu Yang(杨方玉), Yan-Fang Zhang(张艳芳), Peixuan Li(李佩璇), and Shixuan Du(杜世萱) Electron doping in FeSe monolayer and multilayer via metal phthalocyanine adsorption: A first-principles investigation 2025 Chin. Phys. B 34 117302

[1] Hilse M, Brown F, Roth J, Munyan S and Engel-Herbert R 2024 J. Mater. Sci. 59 2035
[2] Kobayashi T, Nakagawa H, Ogawa H, Nabeshima F and Maeda A 2023 J. Phys: Condens. Matter 35 41LT01
[3] Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y and Jia J F 2015 Nat. Mater. 14 285
[4] Jiao X, Dong W, Shi M, Wang H, Ding C, Wei Z, Gong G, Li Y, Li Y, Zuo B,Wang J, Zhang D, Pan M,Wang L and Xue Q K 2024 Natl. Sci. Rev. 11 nwad213
[5] Jiang X, Qin M, Wei X, et al. 2023 Nat. Phys. 19 365
[6] Liu D, Zhang W, Mou D, et al. 2012 Nat. Commun. 3 931
[7] Ouyang X F, Song Z Y and Zhang Y Z 2024 Supercond. Sci. Technol. 37 75015
[8] Yang H, Zhou Y, Miao G, Xu X, Han X, Zhu X X, Guo J, Wu R and Pan X 2023 Microsc Microanal 29 1629
[9] Zhang C, Liu Z, Chen Z, et al. 2017 Nat. Commun. 8 14468
[10] Zakeri K, Rau D, Wettstein J, Döttling M, Jandke J, Yang F, Wulfhekel W and Schmalian J 2023 Phys. Rev. B 107 184508
[11] Zhang W, Li Z, Li F, Zhang H, Peng J, Tang C, Wang Q, He K, Chen X, Wang L, Ma X and Xue Q K 2014 Phys. Rev. B 89 060506
[12] He S, He J, Zhang W, et al. 2013 Nat. Mater. 12 605
[13] Cheng F J, Zhang Y M, Fan J Q, et al 2023 Chin. Phys. Lett. 40 086801
[14] Wang Q Y, Li Z, Zhang W H, et al. 2012 Chin. Phys. Lett. 29 037402
[15] Liu X, Liu D, Zhang W, et al. 2014 Nat. Commun. 5 5047
[16] Yoshizawa S, Minamitani E, Vijayaraghavan S, Mishra P, Takagi Y, Yokoyama T, Oba H, Nitta J, Sakamoto K, Watanabe S, Nakayama T and Uchihashi T 2017 Nano Lett. 17 2287
[17] Guan J, Liu J, Liu B, Huang X, Zhu Q, Zhu X, Sun J, Meng S, Wang W and Guo J 2017 Phys. Rev. B 95 205405
[18] Song C L, Zhang H M, Zhong Y, Hu X P, Ji S H, Wang L, He K, Ma X C and Xue Q K 2016 Phys. Rev. Lett. 116 157001
[19] Zheng F,Wang L L, Xue Q K and Zhang P 2016 Phys. Rev. B 93 075428
[20] Sagehashi R, Kobayashi T, Uchihashi T and Sakamoto K 2021 Surf. Sci. 705 121777
[21] Sumi N, Yamada Y, Sasaki M, Arafune R, Takagi N, Yoshizawa S and Uchihashi T 2019 J. Phys. Chem. C 123 8951
[22] Uchihashi T, Yoshizawa S, Minamitani E, Watanabe S, Takagi Y and Yokoyama T 2019 Mol. Syst. Des. Eng. 4 511
[23] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[24] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[25] Song C L, Wang Y L, Jiang Y P, Li Z, Wang L, He K, Chen X, Ma X C and Xue Q K 2011 Phys. Rev. B 84 020503
[26] Berland K, Cooper V R, Lee K, Schroder E, Thonhauser T, Hyldgaard P and Lundqvist B I 2015 Rep. Prog. Phys. 78 066501
[27] McQueen T M, Huang Q, Ksenofontov V, Felser C, Xu Q, Zandbergen H, Hor Y S, Allred J, Williams A J, Qu D, Checkelsky J, Ong N P and Cava R J 2009 Phys. Rev. B 79 014522
[28] Wang Q, Shen Y, Pan B, Zhang X, Ikeuchi K, Iida K, Christianson A D, Walker H C, Adroja D T, Abdel-Hafiez M, Chen X, Chareev D A, Vasiliev A N and Zhao J 2016 Nat. Commun. 7 12182
[1] Disentangling electronic and phononic thermal transport across two-dimensional interfaces
Linxin Zhai(翟麟鑫) and Zhiping Xu(徐志平). Chin. Phys. B, 2025, 34(2): 027202.
[2] Freestanding La2CuO4/La1.55Sr0.45CuO4 heterostructure membranes with high-TC interface superconductivity
Xueshan Cao(曹雪珊), Chuanyu Shi(史传宇), Yanzhi Wang(王彦智), Meng Zhang(张蒙), Jirong Sun(孙继荣), and Yanwu Xie(谢燕武). Chin. Phys. B, 2025, 34(10): 107301.
[3] Databases of 2D material-substrate interfaces and 2D charged building blocks
Jun Deng(邓俊), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2024, 33(2): 026101.
[4] Thermal rectification induced by Wenzel-Cassie wetting state transition on nano-structured solid-liquid interfaces
Haiyang Li(李海洋), Jun Wang(王军), and Guodong Xia(夏国栋). Chin. Phys. B, 2023, 32(5): 054401.
[5] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[6] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[7] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[8] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
[9] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[10] Review of photoresponsive properties at SrTiO3-based heterointerfaces
Hong Yan(闫虹), Zhaoting Zhang(张兆亭), Shuanhu Wang(王拴虎), Kexin Jin(金克新). Chin. Phys. B, 2018, 27(11): 117804.
[11] Transport properties of doped Bi2Se3 and Bi2Te3 topological insulators and heterostructures
Zhen-Hua Wang(王振华), Xuan P A Gao(高翾), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2018, 27(10): 107901.
[12] In-plane anisotropy in two-dimensional electron gas at LaAlO3/SrTiO3(110) interface
Sheng-Chun Shen(沈胜春), Yan-Peng Hong(洪彦鹏), Cheng-Jian Li(厉承剑), Hong-Xia Xue(薛红霞), Xin-Xin Wang(王欣欣), Jia-Cai Nie(聂家财). Chin. Phys. B, 2016, 25(7): 076802.
[13] Two-dimensional metallic behavior at polar MgO/BaTiO3 (110) interfaces
Du Yan-Ling (杜颜伶), Wang Chun-Lei (王春雷), Li Ji-Chao (李吉超), Zhang Xin-Hua (张新华), Wang Fu-Ning (王芙凝), Liu Jian (刘剑), Zhu Yuan-Hu (祝元虎), Yin Na (尹娜), Mei Liang-Mo (梅良模). Chin. Phys. B, 2015, 24(3): 037301.
[14] Atomic diffusion across Ni50Ti50–Cu explosive welding interface:Diffusion layer thickness and atomic concentration distribution
Chen Shi-Yang (陈仕洋), Wu Zhen-Wei (武振伟), Liu Kai-Xin (刘凯欣). Chin. Phys. B, 2014, 23(6): 066802.
[15] Anomalous Hall effect in perpendicular CoFeB thin films
Zhu Tao (朱涛). Chin. Phys. B, 2014, 23(4): 047504.
No Suggested Reading articles found!