Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 120502    DOI: 10.1088/1674-1056/ad8148
GENERAL Prev   Next  

Coexisting and multiple scroll attractors in a Hopfield neural network with a controlled memristor

Qing-Qing Ma(马青青), An-Jiang Lu(陆安江)†, and Zhi Huang(黄智)
College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China
Abstract  A method of generating multi-double scroll attractors is proposed based on the memristor Hopfield neural network (HNN) under pulse control. First, the original hyperbolic-type memristor is added to the neural network mathematical model, and the influence of this memristor on the dynamic behavior of the new HNN is analyzed. The numerical results show that after adding the memristor, the abundant dynamic behaviors such as chaos coexistence, period coexistence and chaos period coexistence can be observed when the initial value of the system is changed. Then the logic pulse is added to the external memristor. It is found that the equilibrium point of the HNN can multiply and generate multi-double scroll attractors after the pulse stimulation. When the number of logical pulses is changed, the number of multi-double scroll attractors will also change, so that the pulse can control the generation of multi-double scroll attractors. Finally, the HNN circuit under pulsed stimulation was realized by circuit simulation, and the results verified the correctness of the numerical results.
Keywords:  multi-double scroll attractors      Hopfield neural network      pulse control  
Received:  13 August 2024      Revised:  24 September 2024      Accepted manuscript online:  30 September 2024
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
Fund: This paper was supported by the Guizhou Province Natural Science Foundation (Qiankehe Fundamentals-ZK[2023]General-055) and Guizhou Province Science and Technology Support Plan Project (Qiankehe Fundamentals [2023] General-465)
Corresponding Authors:  An-Jiang Lu     E-mail:  ajlu@gzu.edu.cn

Cite this article: 

Qing-Qing Ma(马青青), An-Jiang Lu(陆安江), and Zhi Huang(黄智) Coexisting and multiple scroll attractors in a Hopfield neural network with a controlled memristor 2024 Chin. Phys. B 33 120502

[1] Vahid K, Fereidoun R N and Ali S 2022 Biomedical Signal Processing and Control 78 103852
[2] Wang H, Lu Q and Wang Q 2008 Communications in Nonlinear Science and Numerical Simulation 13 1668
[3] Zhou Z W and Wang S 2022 Physica Scripta 97 025206
[4] Ichinose N 2021 International Journal of Bifurcation and Chaos 31 2130003
[5] Yu F, Chen H and Kong X 2024 Euro. Phys. J. Plus 137 434
[6] Yu F, Wu C, Lin Y, et al. 2024 Nonlinear Dyn. 112 12393
[7] Lai Q, Lai C, Kamdem D P K, Li C and He S 2022 International Journal of Bifurcation and Chaos 32 2250042
[8] Yang F and Wang X 2021 Physica Scripta 96 035218
[9] Castellanos-Jaramillo J, Castellanos-Moreno A and Corella-Madueño A 2020 Physica Scripta 95 075002
[10] Fang T, Zhang J, Huang S, Xu F, Wang M and Yang H 2019 Nonlinear Dyn. 98 1267
[11] Chen C, Bao H, Chen M, Xu Q and Bao B 2019 AEU-International Journal of Electronics and Communication. 111 152894
[12] Yu F, Kong X, Yao W, et al. 2024 Chaos, Solitons & Fractals 179 114440
[13] Chen C, Min F, Zhang Y and Bao B 2021 Nonlinear Dyn. 106 2559
[14] Bao B, Qian H and Xu Q 2017 Frontiers in Computational Neuroscience 11 81
[15] Lai Q and Chen Z 2023 Chaos, Solitons & Fractals 170 113341
[16] Lin H, Wang C, Hong Q and Sun Y 2020 IEEE Transactions on Circuits and Systems II: Express Briefs 67 3472
[17] Bao H, Hu A, Liu W 2019 International Journal of Bifurcation and Chaos 29 1950006
[18] Ge M, Jia Y, Xu Y and Yang L 2018 Nonlinear Dyn. 91 515
[19] Ma M, Xie X, Yang Y, Li Z and Sun Y 2023 Chin. Phys. B 32 058701
[20] Li J, Liu S, Liu W, Yu Y and Wu Y 2016 Nonlinear Dyn. 83 801
[21] Wachtel H, Seaman R and Joines W 1975 Annals of the New York Academy of Sciences 247 46
[22] Gianní M, Liberti M and Apollonio F 2006 Biol. Cybern. 94 118
[23] Haan W D, Flier W M V D, Koene T, Smits L L, Scheltens P and C J 2012 NeuroImage 59 3085
[24] Lin H, Wang C, Yao W and Tan Y 2020 Communications in Nonlinear Science and Numerical Simulation. 90 105390
[25] Zhang S, Zheng J H and Wang X 2021 Chaos 31 011101
[26] Rech P C 2011 Neurocomputing 74 3361
[27] Chen P, Chen Z and Wu W 2010 Chin. Phys. B 19 040509
[28] Han S, Kommuri S, Kwon O and Lee S 2022 Applied Mathematics and Computation 423 126994
[29] Pham V T, Jafari S, Vaidyanathan S, Volos C and Wang X 2016 Science China Technological Sciences 59 358
[30] Zheng P, Tang W and Zhang J 2010 Neurocomputing (Amsterdam) 73 2280
[31] Yu F, Kong X X, Mokbel A A M, Yao W and Cai S 2023 IEEE Transactions on Circuits and Systems II: Express Briefs 70 326
[32] Qin M and Lai Q 2024 Applied Mathematical Modelling 125 125
[33] Wu F, Kang T, Shao Y and Wang Q 2023 Chaos, Solitons & Fractals 172 113569
[34] Etémé A, Tabi C and Mohamadou 2019 Applied Mathematical Modelling 125 432
[35] Sun J, Li C, Wang Z, et al. 2024 IEEE Transactions on Industrial Informatics 20 3778
[36] Bao H, Chen Z G, Cai J M, et al. 2022 Science China Technological Sciences 65 2582
[37] Lin H, Wang C, Cui L, et al. 2022 Nonlinear Dyn. 110 841
[1] Coexistence behavior of asymmetric attractors in hyperbolic-type memristive Hopfield neural network and its application in image encryption
Xiaoxia Li(李晓霞), Qianqian He(何倩倩), Tianyi Yu(余天意),Zhuang Cai(才壮), and Guizhi Xu(徐桂芝). Chin. Phys. B, 2024, 33(3): 030505.
[2] FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient
Fei Yu(余飞), Zinan Zhang(张梓楠), Hui Shen(沈辉), Yuanyuan Huang(黄园媛), Shuo Cai(蔡烁), and Sichun Du(杜四春). Chin. Phys. B, 2022, 31(2): 020505.
[3] Dynamical behavior and optimal impulse control analysis of a stochastic rumor spreading model
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2022, 31(11): 110204.
[4] Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control
Karthikeyan Rajagopal, Anitha Karthikeyan, and Balamurali Ramakrishnan. Chin. Phys. B, 2021, 30(12): 120512.
[5] Novel stability criteria for fuzzy Hopfield neural networks based on an improved homogeneous matrix polynomials technique
Feng Yi-Fu (冯毅夫), Zhang Qing-Ling (张庆灵), Feng De-Zhi (冯德志). Chin. Phys. B, 2012, 21(10): 100701.
[6] Synchronization criteria for coupled Hopfield neural networks with time-varying delays
M.J. Park, O.M. Kwon, Ju H. Park, S.M. Lee, and E.J. Cha . Chin. Phys. B, 2011, 20(11): 110504.
[7] A novel chaotic system with one source and two saddle-foci in Hopfield neural networks
Chen Peng-Fei(陈鹏飞), Chen Zeng-Qiang(陈增强), and Wu Wen-Juan(吴文娟). Chin. Phys. B, 2010, 19(4): 040509.
[8] An linear matrix inequality approach to global synchronisation of non-parameter perturbations of multi-delay Hopfield neural network
Shao Hai-Jian(邵海见), Cai Guo-Liang(蔡国梁), and Wang Hao-Xiang(汪浩祥). Chin. Phys. B, 2010, 19(11): 110512.
[9] More relaxed condition for dynamics of discrete time delayed Hopfield neural networks
Zhang Qiang(张强). Chin. Phys. B, 2008, 17(1): 125-128.
No Suggested Reading articles found!