Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 116102    DOI: 10.1088/1674-1056/adfefd
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Development of a large-area 3He tube array neutron detector with frequency reduction capability

Yan-Feng Wang(王艳凤)1,2, Li-Xin Zeng(曾莉欣)1,2, Liang Xiao(肖亮)1,2, Sheng Guo(郭胜)3, Jing-Jing Ma(马静静)1,2, Zhen-Hong Tan(谭振宏)1,2, Wu Xie(谢武)1,2, Wen-Hai Ji(季文海)1,2, Ping Miao(缪平)1,2, Hai-Yun Teng(滕海云)1,2, Pei-Xun Shen(沈培迅)1,2, Qing-Lei Xiu(修青磊)1,2, Xing-Feng Jiang(蒋兴奋)1,2, Hong Xu(许虹)1,2, Xiao-Juan Zhou(周晓娟)1,2, Meng-Qi Jiang(蒋孟奇)1,2, Lin Zhu(朱林)1,2, Lei Hu(胡磊)1,2, Jia-Jie Li(李嘉杰)1,2, Yong-Xiang Qiu(邱勇翔)1,2, Jian Zhuang(庄建)1,2, Yu-Bin Zhao(赵豫斌)1,2, Yuan-Bo Chen(陈元柏)1,2, Jian-Rong Zhou(周健荣)1,2,†, and Zhi-Jia Sun(孙志嘉)1,2,‡
1 Spallation Neutron Source Science Center, Dongguan 523803, China;
2 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
3 School of Physical and Engineering, Tongji University, Shanghai 200092, China
Abstract  The time-of-flight high-resolution neutron diffractometer (TREND) at the China Spallation Neutron Source (CSNS) has been successfully equipped with a large-area 3He tube array neutron detector, designed to achieve exceptional resolution and uniformity. The detector system, comprising 14 banks and 134 modules with 1376 3He tubes, is optimized for highangle and medium-to-low-angle measurements. Advanced dual-end readout electronics ensure precise charge and timeof-flight measurements, while rigorous performance testing confirmed the system’s spatial resolution and uniformity. In situ testing using polyethylene samples validated the detector’s operational stability, with counting rate deviations within 3.7%. The system also demonstrated excellent two-dimensional imaging capabilities and adaptability to various neutron wavelength ranges through harmonic division techniques. These results highlight the TREND detector system as a robust and versatile tool for high-resolution neutron diffraction studies.
Keywords:  3He tube detector      time-of-flight      spatial resolution      neutron diffractometer  
Received:  25 June 2025      Revised:  13 August 2025      Accepted manuscript online:  26 August 2025
PACS:  61.05.F  
  28.20.Cz (Neutron scattering)  
  29.40.Gx (Tracking and position-sensitive detectors)  
  28.20.Pr (Neutron imaging; neutron tomography)  
Fund: This work was supported by the National Natural Science Foundation of China through the Young Fund Project titled “Research on Polarized Neutron Detector System” (Project Approval No. 12205326). Additional support was provided by the Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2023B0303000003) and the Guangdong Provincial Key Laboratory of Advanced Particle Detection Technology (Grant No. 2024B1212010005).
Corresponding Authors:  Jian-Rong Zhou, Zhi-Jia Sun     E-mail:  zhoujr@ihep.ac.cn;sunzj@ihep.ac.cn

Cite this article: 

Yan-Feng Wang(王艳凤), Li-Xin Zeng(曾莉欣), Liang Xiao(肖亮), Sheng Guo(郭胜), Jing-Jing Ma(马静静), Zhen-Hong Tan(谭振宏), Wu Xie(谢武), Wen-Hai Ji(季文海), Ping Miao(缪平), Hai-Yun Teng(滕海云), Pei-Xun Shen(沈培迅), Qing-Lei Xiu(修青磊), Xing-Feng Jiang(蒋兴奋), Hong Xu(许虹), Xiao-Juan Zhou(周晓娟), Meng-Qi Jiang(蒋孟奇), Lin Zhu(朱林), Lei Hu(胡磊), Jia-Jie Li(李嘉杰), Yong-Xiang Qiu(邱勇翔), Jian Zhuang(庄建), Yu-Bin Zhao(赵豫斌), Yuan-Bo Chen(陈元柏), Jian-Rong Zhou(周健荣), and Zhi-Jia Sun(孙志嘉) Development of a large-area 3He tube array neutron detector with frequency reduction capability 2025 Chin. Phys. B 34 116102

[1] Wang X H, Lu Y T, Tang B, Wang X K, Chen S J, Li Z R and Sun Z J 2025 Chin. Phys. B 34 066106
[2] Yue X P, Zhu Z F, Tang B, Huang C, Yu Q, Chen S J, Wang X K, Xu H, Zhou S H, Cai X J, Yang H, Wang Z Y, Sun Z J and Liu Y T 2023 Chin. Phys. B 32 090402
[3] Cai X J, Yu Q, Huang C, Tang B, Zhou S H, Wang X H, Yue X P and Sun Z J 2023 Chin. Phys. B 32 110701
[4] Wang F W, Liang T J, Yin W, Yu Q Z, He L H, Tao J Z, Zhu T, Jia X J and Zhang S Y 2013 Sci. China Phys. Mech. Astron. 56 2410
[5] Chen H S and Wang X L 2016 Nat. Mater. 15 689
[6] Chen H S, Chen Y B, Fu S N, et al. 2025 Nucl. Instrum. Methods Phys. Res. A 1078 170431
[7] Wu X G, Zhao Y B, Luo H, Zhou J R, Xiao L, Huang T C, Zhou X J, Guan B J, Tian X C, Zhu L, Jiang X F and Sun Z J 2021 Radiat. Detect. Technol. Methods 5 200
[8] Zhu L, Zhou T R, Xia Y G, et al. 2023 Nucl. Sci. Tech. 34 1
[9] Zhu L, Zhou J R, Jiang X F, et al. 2023 Radiat. Detect. Technol. Methods 7 100
[10] Bönisch S P, Namaschk B and Wulf F 2007 Nucl. Instrum. Methods Phys. Res. A 570 133
[11] Ravazzani A, Para A F, Jaime R, Looman M, Ferrer M M, Peerani P and Schillebeeckx P 2006 Radiat. Meas. 41 582
[1] Development of a ceramic gas-electron-multiplier neutron detector prototype with a large sensitive area
Lin Zhu(朱林), Jianrong Zhou(周健荣), Xiaojuan Zhou(周晓娟), Lixin Zeng(曾莉欣), Liang Xiao(肖亮), Hong Xu(许虹), Fei Jia(贾飞), Chaoyue Zhang(张超月), Yezhao Yang(杨烨钊), Dingfu Li(黎定福), Hao Xiong(熊皓), Yuguang Xie(谢宇广), Yubin Zhao(赵豫斌), Yadong Wei(魏亚东), Zhijia Sun(孙志嘉), and Yuanbo Chen(陈元柏). Chin. Phys. B, 2025, 34(9): 090701.
[2] A high-sensitivity deep-junction single-photon detector for near-infrared imaging
Yuanhao Bi(毕元昊), Dajing Bian(卞大井), Ming Li(李铭), and Yue Xu(徐跃). Chin. Phys. B, 2025, 34(6): 068501.
[3] Development of a monochromatic crystal backlight imager for the recent double-cone ignition experiments
Chenglong Zhang(张成龙), Yihang Zhang(张翌航), Xiaohui Yuan(远晓辉), Zhe Zhang(张喆), Miaohua Xu(徐妙华), Yu Dai(戴羽), Yufeng Dong(董玉峰), Haochen Gu(谷昊琛), Zhengdong Liu(刘正东), Xu Zhao(赵旭), Yutong Li(李玉同), Yingjun Li(李英骏), Jianqiang Zhu(朱健强), and Jie Zhang(张杰). Chin. Phys. B, 2024, 33(2): 025201.
[4] Direct measurement of an energy-dependent single-event-upset cross-section with time-of-flight method at CSNS
Biao Pei(裴标), Zhixin Tan(谭志新), Yongning He(贺永宁), Xiaolong Zhao(赵小龙), and Ruirui Fan(樊瑞睿). Chin. Phys. B, 2023, 32(2): 020705.
[5] A stopping layer concept to improve the spatial resolution of gas-electron-multiplier neutron detector
Jianjin Zhou(周建晋), Jianrong Zhou(周健荣), Xiaojuan Zhou(周晓娟), Lin Zhu(朱林), Jianqing Yang(杨建清), Guian Yang(杨桂安), Yi Zhang(张毅), Baowei Ding(丁宝卫), Bitao Hu(胡碧涛), Zhijia Sun(孙志嘉), Limin Duan(段利敏), and Yuanbo Chen(陈元柏). Chin. Phys. B, 2022, 31(5): 050702.
[6] Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique
Juan Qin(秦娟), Gang Cao(曹港), Run Xu(徐闰), Jing Lin(林婧), Hua Meng(孟华), Wen-Zhen Wang(王文贞), Zi-Ye Hong(洪子叶), Jian-Cong Cai(蔡健聪), and Dong-Mei Li(李冬梅). Chin. Phys. B, 2022, 31(11): 117102.
[7] Enhanced ionization of vibrational hot carbon disulfide molecules in strong femtosecond laser fields
Wan-Long Zuo(左万龙), Hang Lv(吕航), Hong-Jing Liang(梁红静), Shi-Min Shan(单石敏), Ri Ma(马日), Bing Yan(闫冰), Hai-Feng Xu(徐海峰). Chin. Phys. B, 2018, 27(6): 063301.
[8] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[9] Areal density and spatial resolution of high energy electron radiography
Jiahao Xiao(肖家浩), Zimin Zhang(张子民), Shuchun Cao(曹树春), Ping Yuan(袁平), Xiaokang Shen(申晓康), Rui Cheng(程锐), Quantang Zhao(赵全堂), Yang Zong(宗阳), Ming Liu(刘铭), Xianming Zhou(周贤明), Zhongping Li(李中平), Yongtao Zhao(赵永涛), Chuanxiang Tang(唐传祥), Wenhui Huang(黄文会), Yingchao Du(杜应超), Wei Gai(盖炜). Chin. Phys. B, 2018, 27(3): 035202.
[10] Applications of nanostructures in wide-field, label-free super resolution microscopy
Xiaowei Liu(刘小威), Chao Meng(孟超), Xuechu Xu(徐雪初), Mingwei Tang(汤明炜), Chenlei Pang(庞陈雷), Qing Yang(杨青). Chin. Phys. B, 2018, 27(11): 118704.
[11] Improvement in bias current redistribution in superconducting strip ion detectors with parallel configuration
Nobuyuki Zen, Go Fujii, Shigetomo Shiki, Masahiro Ukibe, Masaki Koike, Masataka Ohkubo. Chin. Phys. B, 2015, 24(9): 098501.
[12] Investigation of noise properties in grating-based x-ray phase tomography with reverse projection method
Bao Yuan (鲍园), Wang Yan (王研), Gao Kun (高昆), Wang Zhi-Li (王志立), Zhu Pei-Ping (朱佩平), Wu Zi-Yu (吴自玉). Chin. Phys. B, 2015, 24(10): 108702.
[13] Control of the photoionization/photodissociation processes of cyclopentanone with trains of femtosecond laser pulses
Song Yao-Dong (宋耀东), Chen Zhou (陈洲), Yang Xue (杨雪), Sun Chang-Kai (孙长凯), Zhang Cong-Cong (张丛丛), Hu Zhan (胡湛). Chin. Phys. B, 2013, 22(10): 103301.
[14] Modulation transfer function characteristic of uniform-doping transmission-mode GaAs/GaAlAs photocathode
Ren Ling(任玲) and Chang Ben-Kang(常本康) . Chin. Phys. B, 2011, 20(8): 087308.
[15] The dissociation pathways of N2+ in intense femtosecond laser fields
Chen De-Ying(陈德应), Zhang Sheng(张盛), and Xia Yuan-Qin(夏元钦). Chin. Phys. B, 2009, 18(7): 3073-3078.
No Suggested Reading articles found!