| PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Accelerating and guiding of electron beams in a cone target filled with near-critical-density plasmas |
| Jie-Jie Lan(蓝婕婕), Zhang-Hu Hu(胡章虎)†, and You-Nian Wang(王友年) |
| School of Physics, Dalian University of Technology, Dalian 116024, China |
|
|
|
|
Abstract Direct laser acceleration is one of the mechanisms for producing electron bunches carrying up to μC charge, which has attracted much attention in recent decades. Currently, one major challenge for its applications to high-flux x-ray beams and Compton γ-ray sources is the relatively large divergence angle (hundreds of mrad). In this work, a scheme to guide and focus the incident laser and the accelerated electrons is proposed and tested through two-dimensional (2D) particle-in-cell (PIC) simulations. The scheme is based on a hollow cone target (made of aluminum or gold) filled with near-critical-density (NCD) plasmas (pre-ionized polymer foams). Instead of separating the acceleration and focusing processes, it is convenient to simultaneously realize both requirements in such an NCD plasma-filled cone target. PIC simulations reveal that the laser, electrons, and emitted photons can be well-guided along the cone axis in the NCD plasma-filled cone target, preserving the characteristic of high beam charge. Detailed PIC simulations are also performed to show the dependence of the electron energy and charge on the plasma density for a given laser.
|
Received: 29 April 2025
Revised: 19 June 2025
Accepted manuscript online: 01 July 2025
|
|
PACS:
|
52.38.-r
|
(Laser-plasma interactions)
|
| |
52.38.Kd
|
(Laser-plasma acceleration of electrons and ions)
|
| |
52.38.Hb
|
(Self-focussing, channeling, and filamentation in plasmas)
|
| |
52.40.Fd
|
(Plasma interactions with antennas; plasma-filled waveguides)
|
|
| Fund: Project supported by the Fund of the National Key Laboratory of Plasma Physics (Grant No. 6142A04230204) and the National Natural Science Foundation of China (Grant No. 12075046). |
Corresponding Authors:
Zhang-Hu Hu
E-mail: zhanghu@dlut.edu.cn
|
Cite this article:
Jie-Jie Lan(蓝婕婕), Zhang-Hu Hu(胡章虎), and You-Nian Wang(王友年) Accelerating and guiding of electron beams in a cone target filled with near-critical-density plasmas 2025 Chin. Phys. B 34 125201
|
[1] Stark D J, Toncian T and Arefiev A V 2016 Phys. Rev. Lett. 116 185003 [2] Jansen O, Wang T, Stark D J, d’Humieres E, Toncian T and Arefiev A ` V 2018 Plasma Phys. Control. Fusion 60 054006 [3] Zhao Z T, Wang D, Chen J H, et al. 2012 Nat. Photonics 6 360 [4] Amann J, Berg W, Blank V, et al. 2012 Nat. Photonics 6 693 [5] Allaria E, Castronovo D, Cinquegrana P, et al. 2013 Nat. Photonics 7 913 [6] Martinez B, Barbosa B and Vranic M 2023 Phys. Rev. Accel. Beams 26 011301 [7] He Y T, Blackburn T G, Toncian T and Arefiev A V 2021 Commun. Phys. 4 139 [8] Vranic M, Klimo O, Korn G and Weber S 2018 Sci. Rep. 8 4702 [9] Yakimenko V, Alsberg L, Bong E, Bouchard G, Clarke C, Emma C, Green S, Hast C, Hogan M J, Seabury J, Lipkowitz N, O’Shea B, Storey D, White G and Yocky G 2019 Phys. Rev. Accel. Beams 22 101301 [10] Tajima T and Dawson J M 1979 Phys. Rev. Lett. 43 267 [11] Gonsalves A J, Nakamura K, Daniels J, et al. 2019 Phys. Rev. Lett. 122 084801 [12] Lu G W, Li Y J, Hu X C, Chen S Y, Xu H, Zhu M Y, Yan W C and Chen L M 2024 Chin. Phys. B 33 064101 [13] Pukhov A, Sheng Z M and Meyer-ter-Vehn J 1999 Phys. Plasmas 6 2847 [14] Rosmej O N, Shen X F, Pukhov A, Antonelli L, Barbato F, Gyrdymov M, Gunther M M, Z ¨ ahter S, Popov V S, Borisenko N G and Andreev ¨ N E 2021 Matter Radiat. Extremes 6 048401 [15] Babjak R, Willingale L, Arefiev A and Vranic M 2024 Phys. Rev. Lett. 132 125001 [16] Geng P F, Lv W J, Li X L, Tang R A and Xue J K 2018 Chin. Phys. B 27 035201 [17] Hussein A E, Arefiev A V, Batson T, Chen H, Craxton R S, Davies A S, Froula D H, Gong Z, Haberberger D, Ma Y, Nilson P M, Theobald W, Wang T, Weichman K, Williams G J and Willingale L 2021 New J. Phys. 23 023031 [18] Shaw J L, Romo-Gonzalez M A, Lemos N, King P M, Bruhaug G, Miller K G, Dorrer C, Kruschwitz B, Waxer L, Williams G J, Ambat M V, McKie M M, Sinclair M D, Mori W B, Joshi C, Chen H, Palastro J P, Albert F and Froula D H 2021 Sci. Rep. 11 7498 [19] Morimoto Y and Baum P 2018 Nat. Phys. 14 252 [20] Huang T W, Robinson A P L, Zhou C T, Qiao B, Liu B, Ruan S C, He X T and Norreys P A 2016 Phys. Rev. E 93 063203 [21] Tang H, Tangtartharakul K, Babjak R, Yeh I L, Albert F, Chen H, Campbell P T, Ma Y, Nilson P M, Russell B K, Shaw J L, Thomas A G R, Vranic M, Arefiev A V and Willingale L 2024 New J. Phys. 26 053010 [22] Gahn C, Tsakiris G D, Pukhov A, Meyer-ter-Vehn J, Pretzler G, Thirolf P, Habs D and Witte K J 1999 Phys. Rev. Lett. 83 4772 [23] Willingale L, Thomas A G R, Nilson P M, Chen H, Cobble J, Craxton R S, Maksimchuk A, Norreys P A, Sangster T C, Scott R H H, Stoeckl C, Zulick C and Krushelnick K 2013 New J. Phys. 15 025023 [24] Huang T W, Zhou C T, Zhang H, Wu S Z, Qiao B, He X T and Ruan S C 2017 Phys. Rev. E 95 043207 [25] Ceurvorst L, Ratan N, Levy M C, Kasim M F, Sadler J, Scott R H H, Trines R M G M, Huang T W, Skramic M, Vranic M, Silva L O and Norreys P A 2016 New J. Phys. 18 053023 [26] Najmudin Z, Krushelnick K, Tatarakis M, Clark E L, Danson C N, Malka V, Neely D, Santala M I K and Dangor A E 2003 Phys. Plasmas 10 438 [27] Xiao K D, Huang T W, Zhou C T, Qiao B, Wu S Z, Ruan S C and He X T 2016 AIP Advances 6 015303 [28] Zhu X L, Liu W Y, Chen M, Weng S M, McKenna P, Sheng Z M and Zhang J 2022 Phys. Rev. Appl. 18 044051 [29] Huang T W, Zhou C T, Robinson A P L, Qiao B, Zhang H, Wu S Z, Zhuo H B, Norreys P A and He X T 2015 Phys. Rev. E 92 053106 [30] Ju L B, Huang T W, Xiao K D, Wu G Z, Yang S L, Li R, Yang Y C, Long T Y, Zhang H, Wu S Z, Qiao B, Ruan S C and Zhou C T 2016 Phys. Rev. E 94 033202 [31] Zheng X L, Zhang X M and Shen B F 2024 Phys. Plasmas 31 083104 [32] Gong Z, Mackenroth F, Wang T, Yan X Q, Toncian T and Arefiev A V 2020 Phys. Rev. E 102 013206 [33] Ji L L, Jiang S, Pukhov A, Freeman R and Akli K 2017 High Power Laser Sci. Eng. 5 e14 [34] Jiang S, Ji L L, Audesirk H, George K M, Snyder J, Krygier A, Poole P, Willis C, Daskalova R, Chowdhury E, Lewis N S, Schumacher D W, Pukhov A, Freeman R R and Akli K U 2016 Phys. Rev. Lett. 116 085002 [35] Pan Z, Liu J B, Wang P J, Mei Z S, Cao Z X, Kong D F, Xu S R, Liu Z P, Liang Y L, Peng Z Y, Xu T Q, Song T, Chen X, Wu Q F, Zhang Y J, Han Q H, Chen H R, Zhao J R, Gao Y, Chen S Y, Zhao Y Y, Yan X Q, Shou Y R and Ma W J 2024 Phys. Plasmas 31 043108 [36] Shou Y R, Wang D H, Wang P J, et al. 2021 Opt. Lett. 46 3969 [37] Zhang J, Wang W M, Yang X H, Wu D, M Y Y, Jiao J L, Zhang Z, Wu F Y, Yuan X H, Li Y T and Zhu J Q 2020 Phil. Trans. R. Soc. A 378 20200015 [38] MacPhee A G, Divol L, Kemp A J, et al. 2010 Phys. Rev. Lett. 104 055002 [39] Kamboj O, Ghotra H S, Thakur V, Pasley J and Kant N 2021 Eur. Phys. J. Plus 136 484 [40] Nakamura T, Sakagami H, Johzaki T, Nagatomo H, Mima K and Koga J 2007 Phys. Plasmas 14 103105 [41] Ebert T, Heber R, Abel T, Bieker J, Schaumann G and Roth M 2021 High Power Laser Sci. Eng. 9 e24 [42] Yu T P, Yu W, Shao F Q, Luan S X, Zou D B, Ge Z Y, Zhang G B, Wang J W, Wang W Q, Li X H, Liu J X, Ouyang J M and Wong A Y 2015 J. Appl. Phys. 117 023105 [43] Xue K, Dou Z K, Wan F, Yu T P, Wang W M, Ren J R, Zhao Q, Zhao Y T, Xu Z F and Li J X 2020 Matter Radiat. Extremes 054402 [44] Li X M, Chao Y, Xie R, Liu D J, Zhou Y Z, Zhang S T, Yang T, Liu Z J, Cao L H and Zheng C Y 2022 Laser Part. Beams e24 2022 [45] Rosmej O N, Andreev N E, Zaehter S, Zahn N, Christ P, Borm B, Radon T, Sokolov A, Pugachev L P, Khaghani D, Horst F, Borisenko N G, Sklizkov G and Pimenov V G 2019 New J. Phys. 21 043044 [46] Ma B B, Ren J R, Wang S Y, et al. 2022 Laser Part. Beams 2022 e15 [47] Rosmej O N, Gyrdymov M, Andreev N E, Tavana P, Popov V, Borisenko N, Gromov A I, Gus’kov S Y, Yakhin R, Vegunova G A, Bukharskii N, Korneev P, Cikhardt J, Zähter S, Busch S, Jacoby J, Pi- menov V G, Spielmann C and Pukhov A 2025 High Power Laser Sci. Eng. 13 e3 [48] Yuan X X, Zhou C T, Zhang H, Li R, Ping Y L and Zhong J Y 2023 Chin. Phys. B 32 054101 [49] Arber T D, Bennett K, Brady C S, Lawrence-Douglas A, Ramsay M G, Sircombe N J, Gillies P, Evans R G, Schmitz H, Bell A R and Ridgers C P 2015 Plasma Phys. Control. Fusion 57 113001 [50] Pan K Q, Li Z C, Guo L, Gong T, Li S W, Yang D, Zheng C Y, Zhang B H and He X T 2023 High Power Laser Sci. Eng. 11 e76 [51] Shou Y R, Wang P J, Lee S G, et al. 2023 Nat. Photonics 17 137 [52] Zhu X L, Yin Y, Yu T P, Shao F Q, Ge Z Y, Wang W Q and Liu J J 2015 New J. Phys. 17 053039 [53] Shou Y R, Lu H Y, Hu R H, Lin C, Wang H Y, Zhou M L, He X T, Chen J E and Yan X Q 2016 Opt. Lett. 41 139 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|