Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 124703    DOI: 10.1088/1674-1056/ae067c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev  

Quantum error mitigation based on the Z-mixed-expression of the amplitude damping channel

Ting Li(李汀)1,†, Hangming Zhang(张航铭)1,2, Lingling Zheng(征玲玲)1, and Fei Li(李飞)1
1 School of Communications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 China Telecom Fujian Branch, Fuzhou 350000, China
Abstract  In the field of quantum error mitigation, most current research separately addresses quantum gate noise mitigation and measurement noise mitigation. However, due to the typically high complexity of measurement noise mitigation methods, such as those based on estimating response matrices, the overall complexity of noise mitigation schemes increases when combining measurement noise mitigation with other quantum gate noise mitigation approaches. This paper proposes a low-complexity quantum error mitigation scheme that jointly mitigates quantum gate and measurement noise, specifically when measurement noise manifests as an amplitude damping channel. The proposed scheme requires estimating only three parameters to jointly mitigate both types of noise, whereas the zero-noise extrapolation method enhanced by response matrix estimation requires estimating at least six parameters under the same conditions.
Keywords:  quantum error mitigation      measurement error mitigation      amplitude damping channel      lowcomplexity  
Received:  12 July 2025      Revised:  14 September 2025      Accepted manuscript online:  15 September 2025
PACS:  47.55.nb (Capillary and thermocapillary flows)  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  47.11.Fg (Finite element methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62271265).
Corresponding Authors:  Ting Li     E-mail:  lit@njupt.edu.cn
About author:  2025-124703-251197.pdf

Cite this article: 

Ting Li(李汀), Hangming Zhang(张航铭), Lingling Zheng(征玲玲), and Fei Li(李飞) Quantum error mitigation based on the Z-mixed-expression of the amplitude damping channel 2025 Chin. Phys. B 34 124703

[1] Preskill J 2018 Quantum 2 79
[2] Fowler A G, Mariantoni M, Martinis J M and Cleland A N 2012 Phys. Rev. A 86 032324
[3] Horsman D, Fowler A G, Devitt S and Munro W J 2012 New J. Phys. 14 123011
[4] Bacon D 2006 Phys. Rev. A 73 012340
[5] Knill E, Laflamme R and Viola L 2000 Phys. Rev. Lett. 84 2525
[6] Gottesman D 2002 Proc. Symp. Appl. Math. 58 221
[7] Suzuki Y, Endo S, Fujii K, Mitarai K and Nakajima T 2022 PRX Quantum 3 010345
[8] Endo S, Benjamin S C and Li Y 2018 Phys. Rev. X 8 031027
[9] Giurgica-Tiron T, Hindy Y, LaRose R, Mari A and Zeng W J 2020 IEEE International Conference on Quantum Computing and Engineering, October 12-16, 2020, Denver, USA, pp. 306
[10] Li Y and Benjamin S C 2017 Phys. Rev. X 7 021050
[11] Temme K, Bravyi S and Gambetta J M 2017 Phys. Rev. Lett. 119 180509
[12] Urbanek M, Nachman B, Pascuzzi V R, He A, Bauer C W and de Jong W A 2021 Phys. Rev. Lett. 127 270502
[13] Guo Y and Yang S 2022 PRX Quantum 3 040313
[14] Smith A W R, Khosla K E, Self C N and Kim M S 2021 Sci. Adv. 7 eabi8009
[15] Hicks R, Kobrin B, Bauer C W and Kaplan T 2022 Phys. Rev. A 105 012419
[16] Kwon H and Bae J 2020 IEEE Trans. Comput. 70 1401
[17] Zhao R S, Ma H Y, Cheng T, Wang S and Fan X K 2024 Chin. Phys. B 33 040304
[18] Nachman B, Urbanek M, de Jong W A and Bauer C W 2020 Quantum Inf. 6 84
[19] Zhang H, Li T and Li F 2024 Quantum Inf. Process. 23 213
[20] Yeo Y and Skeen A 2003 Phys. Rev. A 67 064301
[21] Fletcher A S, Shor P W and Win M Z 2008 IEEE Trans. Inf. Theory 54 5705
[22] Chessa S and Giovannetti V 2021 Commun. Phys. 4 22
[23] Smith A, Kim M S, Pollmann F and Knolle J 2019 Quantum Inf. 5 106
[24] Suzuki M 1976 Commun. Math. Phys. 51 183
[1] An overview of quantum error mitigation formulas
Dayue Qin(秦大粤), Xiaosi Xu(徐晓思), and Ying Li(李颖). Chin. Phys. B, 2022, 31(9): 090306.
[2] Quantum uncertainty relations of quantum coherence and dynamics under amplitude damping channel
Fugang Zhang(张福刚), Yongming Li(李永明). Chin. Phys. B, 2018, 27(9): 090301.
[3] Time evolution of a squeezed chaotic field in an amplitude damping channel when used as a generating field for a squeezed number state
Xu Xing-Lei (徐兴磊), Li Hong-Qi (李洪奇), Fan Hong-Yi (范洪义). Chin. Phys. B, 2015, 24(7): 070306.
[4] Geometric discord for non-X states
Liu Chen (刘辰), Dong Yu-Li (董裕力), Zhu Shi-Qun (朱士群). Chin. Phys. B, 2014, 23(6): 060307.
[5] Entanglement fidelity of channel adaptive quantum codes
Zhan Yun (詹云), Chen Xiao-Yu (陈小余). Chin. Phys. B, 2013, 22(1): 010308.
[6] Noisy teleportation of qubit states via the Greenberger-Horne-Zeilinger state or the W state
Li Yan-Ling(李艳玲), Fang Mao-Fa(方卯发), Xiao Xing(肖兴), Wu Chao(吴超), and Hou Li-Zhen(侯丽珍). Chin. Phys. B, 2010, 19(6): 060306.
[7] Entanglement-enhanced classical communication through generalized amplitude damping channel
Hou Li-Zhen(侯丽珍) and Fang Mao-Fa(方卯发). Chin. Phys. B, 2007, 16(2): 318-323.
No Suggested Reading articles found!