| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Engineering an anisotropic Dicke model of Rydberg atom arrays in an optical cavity with dipole–dipole interactions |
| Bao-Yun Dong(董保云)1,2, Yanhua Zhou(周彦桦)3,4, Wei Wang(王伟)1,2,†, and Tao Wang(汪涛)1,2,‡ |
1 Department of Physics, and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 401331, China; 2 Center of Modern Physics, Institute for Smart City of Chongqing University in Liyang, Liyang 213300, China; 3 National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China; 4 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
|
|
Abstract The anisotropic Dicke model offers a platform for the exploration of numerous quantum many-body phenomena. Here, we propose a Floquet-engineered scheme to realize such a system with strong dipole–dipole interactions using Rydberg atom arrays in an optical cavity. By periodically modulating the microwave fields, the anisotropic parameter can be precisely controlled and tuned between zero and one, enabling the system to transition smoothly from being purely dominated by rotating-wave terms to being exclusively governed by counter- rotating wave excitations. Leveraging this tunability, we demonstrate enhanced preparation of adiabatic superradiant and superradiant solid phases where symmetryprotected energy gaps suppress undesired level crossings. Our approach, combining Rydberg interactions and cavitymediated long-range correlations, establishes a versatile framework for the quantum simulation of light–matter interactions and the exploration of exotic many-body phases.
|
Received: 17 April 2025
Revised: 26 May 2025
Accepted manuscript online: 11 June 2025
|
|
PACS:
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
| |
32.80.Ee
|
(Rydberg states)
|
| |
05.30.Rt
|
(Quantum phase transitions)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 12274045). T.W. acknowledges funding from the National Natural Science Foundation of China (Grant No. 12347101) and the Program of the State Key Laboratory of Quantum Optics and Quantum Optics Devices (Grant No. KF202211). |
Corresponding Authors:
Wei Wang, Tao Wang
E-mail: weiwangphys@163.com;tauwaang@cqu.edu.cn
|
Cite this article:
Bao-Yun Dong(董保云), Yanhua Zhou(周彦桦), Wei Wang(王伟), and Tao Wang(汪涛) Engineering an anisotropic Dicke model of Rydberg atom arrays in an optical cavity with dipole–dipole interactions 2025 Chin. Phys. B 34 114203
|
[1] Kockum A F, Miranowicz A, De Liberato S, Savasta S and Nori F 2019 Nat. Rev. Phys. 1 19 [2] Gutzler R, Garg M, Ast C R, Kuhnke K and Kern K 2021 Nat. Rev. Phys. 3 441 [3] Dicke R H 1954 Phys. Rev. 93 99 [4] Agarwal S, Rafsanjani S M H and Eberly J H 2012 Phys. Rev. A 85 043815 [5] Fink J M, Bianchetti R, Baur M, Göppl M, Steffen L, Filipp S, Leek P J, Blais A and Wallraff A 2009 Phys. Rev. Lett. 103 083601 [6] Restrepo J and Rodríguez B A 2016 J. Phys. B: Atom. Mol. Opt. Phys. 49 125502 [7] Feng M, Zhong Y P, Liu T, Yan L L, Yang W L, Twamley J and Wang H 2015 Nat. Commun. 6 7111 [8] Yang H Y, Shi H L,Wan Q K, Zhang K,Wang X H and YangWL 2024 Phys. Rev. A 109 012204 [9] Fujii K 2014 arXiv:1301.3585 [10] Garbe L, Egusquiza I L, Solano E, Ciuti C, Coudreau T, Milman P and Felicetti S 2017 Phys. Rev. A 95 053854 [11] Liberti G and Zaffino R 2005 Euro. Phys. J. B 44 535 [12] Forn-Diaz P, Lamata L, Rico E, Kono J and Solano E 2019 Rev. Mod. Phys. 91 025005 [13] Jaako T, Xiang Z L, Garcia-Ripoll J J and Rabl P 2016 Phys. Rev. A 94 033850 [14] Kirton P, Roses M M, Keeling J and Dalla Torre E G 2019 Advanced Quantum Technologies 2 1800043 [15] Baumann K, Guerlin C, Brennecke F and Esslinger T 2010 Nature 464 1301 [16] Chiacchio E I R, Nunnenkamp A and Brunelli M 2023 Phys. Rev. Lett. 131 113602 [17] Das P, Wüster S and Sharma A 2024 Phys. Rev. A 109 013715 [18] Garraway B M 2011 Phil. Tran. Roy. Soc. A Math. Phys. Eng. Sci. 369 1137 [19] Hassan S, Hildren G, Puri R and Bullough R 1982 J. Phys. B: Atom. Mol. Opt. Phys. 15 2635 [20] Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Huemmer T, Solano E, Marx A and Gross R 2010 Nat. Phys. 6 772 [21] Cao X, You J Q, Zheng H, Kofman A G and Nori F 2010 Phys. Rev. A 82 022119 [22] Garziano L, Stassi R, Macrí V, Kockum A F, Savasta S and Nori F 2015 Phys. Rev. A 92 063830 [23] Wang X, Miranowicz A, Li H R and Nori F 2016 Phys. Rev. A 94 053858 [24] Casanova J, Romero G, Lizuain I, García-Ripoll J J and Solano E 2010 Phys. Rev. Lett. 105 263603 [25] Wang X, Miranowicz A, Li H R and Nori F 2017 Phys. Rev. A 96 063820 [26] Liu M, Chesi S, Ying Z J, Chen X, Luo H G and Lin H Q 2017 Phys. Rev. Lett. 119 220601 [27] Ashhab S and Nori F 2010 Phys. Rev. A 81 042311 [28] Ma K K W and Law C K 2015 Phys. Rev. A 92 023842 [29] Le Boité A, Hwang M J, Nha H and Plenio M B 2016 Phys. Rev. A 94 033827 [30] Hwang M J, Kim M S and Choi M S 2016 Phys. Rev. Lett. 116 153601 [31] Hioe F T 1973 Phys. Rev. A 8 1440 [32] de Aguiar M A M, Furuya K and Nemes M C 1991 Quantum Optics 3 305 [33] Bastarrachea-Magnani M A, Lerma-Hernández S and Hirsch J G 2016 J. Stat. Mech.: Theor. Exp. 2016 093105 [34] Aedo I and Lamata L 2018 Phys. Rev. A 97 042317 [35] Das P, Bhakuni D S and Sharma A 2023 Phys. Rev. A 107 043706 [36] Zhu X, Lü J H, NingW, Shen L T,Wu F and Yang Z B 2024 Phys. Rev. A 109 052621 [37] Das P, Bhakuni D S, Santos L F and Sharma A 2023 Phys. Rev. A 108 063716 [38] Buijsman W, Gritsev V and Sprik R 2017 Phys. Rev. Lett. 118 080601 [39] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153 [40] Altman E, Brown K R, Carleo G, Carr L D, Demler E, Chin C, De- Marco B, Economou S E, Eriksson M A, Fu K M C, Greiner M, Hazzard K R, Hulet R G, Kollár A J, Lev B L, Lukin M D, Ma R, Mi X, Misra S, Monroe C, Murch K, Nazario Z, Ni K K, Potter A C, Roushan P, Saffman M, Schleier-Smith M, Siddiqi I, Simmonds R, Singh M, Spielman I, Temme K, Weiss D S, Vučković J, Vuletić V, Ye J and Zwierlein M 2021 PRX Quantum 2 017003 [41] Daley A J, Bloch I, Kokail C, Flannigan S, Pearson N, Troyer M and Zoller P 2022 Nature 607 667 [42] Browaeys A, Barredo D and Lahaye T 2016 J. Phys. B: Atom. Mol. Opt. Phys. 49 152001 [43] Saffman M 2016 J. Phys. B: Atom. Mol. Opt. Phys. 49 202001 [44] Zhang Z Y, Ding D S and Shi B S 2021 Chin. Phys. B 30 020307 [45] Wu X, Liang X, Tian Y, Yang F, Chen C, Liu Y C, Tey M K and You L 2021 Chin. Phys. B 30 020305 [46] Han Y and Yi W 2024 Chin. Phys. Lett. 41 033201 [47] Solookinejad G, Jabbari M, Nafar M, Sangachin E A and Asadpour S H 2019 International Journal of Theoretical Physocs 58 1359 [48] Parigi V, Bimbard E, Stanojevic J, Hilliard A J, Nogrette F, Tualle- Brouri R, Ourjoumtsev A and Grangier P 2012 Phys. Rev. Lett. 109 233602 [49] Lin G W, Qi Y H, Lin X M, Niu Y P and Gong S Q 2015 Phys. Rev. A 92 043842 [50] Boddeda R, Usmani I, Bimbard E, Grankin A, Ourjoumtsev A, Brion E and Grangier P 2016 J. Phys. B: Atom. Mol. Opt. Phys. 49 084005 [51] Guerlin C, Brion E, Esslinger T and Mølmer K 2010 Phys. Rev. A 82 053832 [52] Grinkemeyer B, Guardado-Sanchez E, Dimitrova I, Shchepanovich D, Mandopoulou G E, Borregaard J, Vuletić V and Lukin M D 2025 Science 387 1301 [53] Li R, He S, Meng Z J, Jin Z and Gong W J 2023 Chin. Phys. Lett. 40 060302 [54] Ebadi S, Wang T T, Levine H, Keesling A, Semeghini G, Omran A, Bluvstein D, Samajdar R, Pichler H, Ho W W, Choi S, Sachdev S, Greiner M, Vuletic V and Lukin M D 2021 Nature 595 227[55] Bluvstein D, Omran A, Levine H, Keesling A, Semeghini G, Ebadi S, Wang T T, Michailidis A A, Maskara N, Ho W W, Choi S, Serbyn M, Greiner M, Vuletic V and Lukin M D 2021 Science 371 1355 [56] Manovitz T, Li S H, Ebadi S, Samajdar R, Geim A A, Evered S J, Bluvstein D, Zhou H, Koyluoglu N U, Feldmeier J, Dolgirev P E, Maskara N, Kalinowski M, Sachdev S, Huse D A, Greiner M, Vuletic V and Lukin M D 2025 Nature 638 86 [57] Ding D, Bai Z, Liu Z, Shi B, Guo G, LiWand Adams C S 2024 Science Advances 10 eadl5893 [58] Nguyen M T, Liu J G, Wurtz J, Lukin M D, Wang S T and Pichler H 2023 PRX Quantum 4 010316 [59] Bombieri L, Zeng Z, Tricarico R, Lin R, Notarnicola S, Cain M, Lukin M D and Pichler H 2024 arXiv:2411.04645 [60] Puel T O and Macrí T 2024 Phys. Rev. Lett. 133 106901 [61] Rohn J, Hörmann M, Genes C and Schmidt K P 2020 Phys. Rev. Res. 2 023131 [62] Zhang X F, Sun Q,Wen Y C, LiuWM, Eggert S and Ji A C 2013 Phys. Rev. Lett. 110 090402 [63] An G Q, Zhou Y H, Wang T and Zhang X F 2022 Phys. Rev. B 106 195435 [64] Gelhausen J, Buchhold M, Rosch A and Strack P 2016 SciPost Phys. 1 004 [65] Liu W, Zhang L and Wang T 2023 Chin. Phys. B 32 053203 [66] Lu X T, Wang T, Li T, Zhou C H, Yin M J, Wang Y B, Zhang X F and Chang H 2021 Phys. Rev. Lett. 127 033601 [67] Bravyi S, DiVincenzo D P and Loss D 2011 Annals of Physics 326 2793 [68] Nevado P and Porras D 2015 Phys. Rev. A 92 013624 [69] Gammelmark S and Mølmer K 2011 New J. Phys. 13 053035 [70] Zhuang M, Huang J, Ke Y and Lee C 2020 Annalen der Physik 532 2070020 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|