Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 108102    DOI: 10.1088/1674-1056/ade068
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Phase-field simulation dendritic growth under forced convection with hypergravity

Jianjing Zheng(郑建靖)1,2,†, Xuanxuan Zhou(周旋旋)1,2, Daosheng Ling(凌道盛)1,2, and Kunming Song(宋坤明)1,2
1 Institute of Hypergravity Science and Technology, Zhejiang University, Hangzhou 310058, China;
2 Key Laboratory of Soft Soils and Geoenvironmental Engineering (Ministry of Education), Zhejiang University, Hangzhou 310058, China
Abstract  The phase-field method is used to study the free dendritic crystal growth under forced convection with hypergravity, the hypergravity term is introduced into the liquid-phase momentum equation to examine the dendritic growth. The paper focuses on the morphology of dendrite growth as well as the tip radius of the upstream dendritic arm and the average growth velocity of dendrite tips under different hypergravity levels. The results show that the morphology of dendrite changes significantly under represent simulation conditions when the hypergravity reaches $35\bm g_0$, the upstream dendritic arm will bifurcate and the horizontal dendrite arms gradually tilt upwards. This change is mainly caused by the hypergravity and flow changing the temperature field near the dendrite interface. In addition, before the morphology of the dendrite is significantly altered, the radius of the tip of the dendrite upstream arm becomes larger with the increase in hypergravity, and the average growth velocity will increase linearly with it. The morphology of dendritic growth under different hypergravity and the changes in the tip radius along with the average growth velocity of the upstream dendritic tip with hypergravity are given in this paper. Finally, the reasons for these phenomena are analyzed.
Keywords:  hypergravity      dendrite growth      phase-field simulation      forced convection  
Received:  16 March 2025      Revised:  10 May 2025      Accepted manuscript online:  04 June 2025
PACS:  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 52588202).
Corresponding Authors:  Jianjing Zheng     E-mail:  zhengjianjing@zju.edu.cn

Cite this article: 

Jianjing Zheng(郑建靖), Xuanxuan Zhou(周旋旋), Daosheng Ling(凌道盛), and Kunming Song(宋坤明) Phase-field simulation dendritic growth under forced convection with hypergravity 2025 Chin. Phys. B 34 108102

[1] Beckermann C, Diepers H J, Steinbach I, Karma A and Tong X 1999 J. Comput. Phys. 154 468
[2] Tong X, Beckermann C, Karma A and Li Q 2001 Phys. Rev. E 63 061601
[3] Zhang Z D, Cao Y T, Sun D K, Xing H, Wang J C and Ni Z H 2020 Chin. Phys. B 29 028103
[4] Zhu C S, Gao Z H, Lei P, Feng L and Zhao B R 2022 Chin. Phys. B 31 068102
[5] Lu Y L 2003 Phase-field modeling of three-dimensional dendritic solidification coupled with fluid flow (Ph.D. dissertation) (Iowa City: The University of Iowa)
[6] Jeong J H 2001 Phys. Rev. E 64 041602
[7] Chen C C, Tsai Y L and Lan C W 2009 Int. J. Heat Mass Transfer 52 1158
[8] Gong T Z, Chen Y, L D Z, Cao Y F and Fu P X 2019 Int. J. Heat Mass Transfer 135 262
[9] Qiu Y Q, Wu M W, Qin X P and Xiong S M 2024 Chin. Foundry 21 125
[10] Wang J, Li X K, Liu C and Shi Y 2016 Chin. J. Solid Mech. 37 1 (in Chinese)
[11] Hua C W, Gan Z H, Jiang P H, Sun Y and Lu Z H 2018 Spec. Cast. Nonferrous Alloys 38 327 (in Chinese)
[12] Xiong M, Gan Z H, Liang Y, Feng J J, Lu Z H and Liu J 2017 J. Mater. Sci. Eng. 35 1005 (in Chinese)
[13] Scotti K L, Northard E E, Plunk A, Tappan, B C and Dunand D C 2017 Acta Mater. 124 608
[14] Zhang N, Luo X, Feng S and Ren Y 2014 Mater. Sci. Technol 30 499
[15] Wu H, Wu C, Lu Y, Jiang P, Gan Z and Liu J 2020 Adv. Eng. Mater. 22 2000360
[16] Li Z Y, Chen C L and Duan M M 2007 Spec. Cast. Nonferrous Alloys 27 753 (in Chinese)
[17] Jin Q W, Chen C L, Duan M M and Li Z Y 2007 J. Inorg. Mater. 22 1015 (in Chinese)
[18] Zimmermann G, Hamacher M and Sturz L 2019 J. Cryst. Growth 512 47
[19] Zhang Z H, Hou X, Zhang Y, Wei H and Wang J 2022 Acta Mech. Sin. 38 122031
[20] Steinbach I 2009 Acta Mater. 57 2640
[21] Viardin A, Zollinger J, Sturz L, Apel M, Eiken J, Berger R and Hecht U 2020 Comput. Mater. Sci 172 109358
[22] Zhang Y Y, Do R F, Wan J S, Liu X L and Wen Z 2024 Heliyo 10 e27008
[23] Abou-Khalil L, Salloum-Abou-Jaoude G, Reinhart G, Pickmann C, Zimmermann G and Nguyen-Thi H 2016 Acta Mater. 110 44
[24] Karma A and Rappel W J 1996 Phys. Rev. E 53 R3017(R)
[25] Karma A and Rappel W J 1998 Phys. Rev. E 57 4323
[26] Ivantsov G P 1947 Dokl. Akad. Nauk SSSR 58 567
[27] Alexandrov D V and Galenko P K 2014 Phys. Usp. 57 771
[28] Alexandrov D V and Galenko P K 2020 Philos. Trans. R. Soc. A 379 0325
[29] Coussy O 2004 Poromechanics (John Wiley & Sons, Chichester, UK) pp. 14-15
[1] Dendritic tip selection during solidification of alloys: Insights from phase-field simulations
Qingjie Zhang(张清杰), Hui Xing(邢辉), Lingjie Wang(王灵杰), and Wei Zhai(翟薇). Chin. Phys. B, 2024, 33(9): 096103.
[2] Parameter calculation and result storage for phase-field simulation in α-Mg dendrite growth of Mg-5-wt% Zn alloy
Wei-Peng Chen(陈伟鹏), Hua Hou(侯华), Yun-Tao Zhang(张云涛), Wei Liu(柳伟), and Yu-Hong Zhao(赵宇宏). Chin. Phys. B, 2023, 32(11): 118103.
[3] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[4] Effect of elasticity mismatch on cell deformation and migration: A phase-field study
Yuanfeng Yin(尹元枫), Hui Xing(邢辉), Duyang Zang(臧渡洋), Kexin Jin(金克新). Chin. Phys. B, 2018, 27(11): 116201.
[5] Effect of elastic strain energy on grain growth and texture in AZ31 magnesium alloy by phase-field simulation
Ri He(何日), Ming-Tao Wang(王明涛), Jian-Feng Jin(金剑锋), Ya-Ping Zong(宗亚平). Chin. Phys. B, 2017, 26(12): 128201.
[6] Effects of physical parameters on the cell-to-dendrite transition in directional solidification
Wei Lei (魏雷), Lin Xin (林鑫), Wang Meng (王猛), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2015, 24(7): 078108.
[7] Dendrite to symmetry-broken dendrite transition in directional solidification of non-axially oriented crystals
Xing Hui (邢辉), Wang Jian-Yuan (王建元), Chen Chang-Le (陈长乐), Jin Ke-Xin (金克新), Du Li-Fei (杜立飞). Chin. Phys. B, 2014, 23(3): 038104.
[8] Effect of buoyancy-driven convection on steady state dendritic growth in a binary alloy
Chen Ming-Wen (陈明文), Wang Bao (王宝), Wang Zi-Dong (王自东). Chin. Phys. B, 2013, 22(11): 116805.
[9] Solute distribution in KNbO3 melt-solution and its effect on dendrite growth during rapid solidification
Pan Xiu-Hong(潘秀红), Jin Wei-Qing(金蔚青), Liu Yan(刘岩), and Ai Fei(艾飞). Chin. Phys. B, 2009, 18(2): 699-703.
[10] Dynamic scaling behaviour of late-stage phase separation in Ni75AlxV25-x alloys
Li Yong-Sheng(李永胜), Chen Zheng(陈铮), Lu Yan-Li(卢艳丽), and Xu Guo-Dong(徐国栋). Chin. Phys. B, 2007, 16(3): 854-861.
No Suggested Reading articles found!