|
|
|
Oxygen activation-triggered thermal instability in Li(Ni0.8Co0.1Mn0.1)O2 cathode |
| Supeng Chen(陈苏鹏)1,†, Yingli Li(李英丽)1,†, Yande Li(李彦德)2,†, Keqiang Li(李克强)1, Peirong Li(李培荣)1, Jianwei Meng(孟建伟)3, Zilong Zhao(赵子龙)4,‡, Yuanyuan Pan(潘圆圆)1,§, Qinghao Li(李庆浩)1,¶, and Pengfei Yu(于鹏飞)3,# |
1 College of Physics, Qingdao University, Qingdao 266071, China; 2 National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China; 3 Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China; 4 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China |
|
|
|
|
Abstract Ni-rich layered LiNi$_{0.8}$Co$_{0.1}$Mn$_{0.1}$O$_{2}$ (NCM811) is a leading cathode candidate for the next generation of lithium-ion batteries because of its high energy density. In practice, NCM811 exhibits poor thermal stability that can lead to thermal runaway, which is a critical bottleneck for the practical application of this promising material. The fundamental factors underlying thermal failure and the relationship between surface and bulk degradation, however, remain unclear. In this work, we track the evolution of the atomic and electronic structures of high-voltage delithiated NCM811 using x-ray diffraction (XRD), transmission electron microscopy (TEM), and synchrotron-based soft x-ray absorption spectroscopy (sXAS). Oxygen hole states formed upon delithiation are thermodynamically unstable and lead to O$_2$ release upon heating. This O$_2$ release occurs prior to phase transitions and therefore constitutes the primary cause of thermal failure in NCM811 cathodes. Although surface oxygen is inherently less stable, the presence of similar oxygen hole states at the surface and in the bulk causes surface and bulk degradation to proceed almost simultaneously. These findings delineate the degradation pathway of NCM811 during thermal runaway and provide rational guidelines for material design and optimization.
|
Received: 03 August 2025
Revised: 28 August 2025
Accepted manuscript online: 08 September 2025
|
|
PACS:
|
82.47.Aa
|
(Lithium-ion batteries)
|
| |
82.45.Fk
|
(Electrodes)
|
| |
78.70.Dm
|
(X-ray absorption spectra)
|
| |
68.60.Dv
|
(Thermal stability; thermal effects)
|
|
| Fund: This project was supported by the Science and Technology Commission of Shanghai Municipality (Grant No. 22560780300), the National Natural Science Foundation of China (Grant Nos. 22309097 and 52130202), the Shandong Provincial Natural Science Foundation (Grant Nos. 2023KJ228 and ZR2021QE061), the Youth Innovation Technology Project of Higher Education Institutions in Shandong Province (Grant No. 2022KJ139), and the Shanghai Soft X-ray Free-Electron Laser Facility beamline project. The authors thank beamline 20U (31124.02.SSRF.BL20U2) of SSRF and UXS of sXFEL for the XES measurements, and beamline BL02B (31124.02.SSRF.BL02B02) of SSRF for the sXAS measurements. |
Corresponding Authors:
Zilong Zhao, Yuanyuan Pan, Qinghao Li, Pengfei Yu
E-mail: zhaozl@sari.ac.cn;panyuanupc@126.com;qhli@qdu.edu.cn;yupf1@shanghaitech.edu.cn
|
Cite this article:
Supeng Chen(陈苏鹏), Yingli Li(李英丽), Yande Li(李彦德), Keqiang Li(李克强), Peirong Li(李培荣), Jianwei Meng(孟建伟), Zilong Zhao(赵子龙), Yuanyuan Pan(潘圆圆), Qinghao Li(李庆浩), and Pengfei Yu(于鹏飞) Oxygen activation-triggered thermal instability in Li(Ni0.8Co0.1Mn0.1)O2 cathode 2025 Chin. Phys. B 34 108201
|
[1] Liu W, Oh P, Liu X, Lee M J, Cho W, Chae S, Kim Y and Cho J 2015 Angew. Chem. Int. Ed. 54 4440 [2] Myung S T, Maglia F, Park K J, Yoon C S, Lamp P, Kim S J and Sun Y K 2017 ACS Energy Lett. 2 196 [3] Zhang S S 2020 Energy Storage Mater. 24 247 [4] Hwang S, Kim S M, Bak S M, Kim S Y, Cho B W, Chung K Y, Lee J Y, Stach E A and Chang W 2015 Chem. Mater. 27 3927 [5] Bak S M, Hu E, Zhou Y, Yu X, Senanayake S D, Cho S J, Kim K B, Chung K Y, Yang X Q and Nam K W 2014 ACS Appl. Mater. Inter. 6 22594 [6] Nam K W, Bak S M, Hu E, Yu X, Zhou Y, Wang X, Wu L, Zhu Y, Chung K Y and Yang X Q 2013 Adv. Funct. Mater. 23 1047 [7] Hwang S, Chang W, Kim S M, Su D, Kim D H, Lee J Y, Chung K Y and Stach E A 2014 Chem. Mater. 26 1084 [8] Liu X, Xu G L, Yin L, Hwang I, Li Y, Lu L, Xu W, Zhang X, Chen Y, Ren Y, Sun C J, Chen Z, Ouyang M and Amine K 2020 J. Am. Chem. Soc. 142 19745 [9] Lee S, Jin W, Kim S H, Joo S H, Nam G, Oh P, Kim Y K, Kwak S K and Cho J 2019 Angew. Chem. Int. Ed. 58 10478 [10] Wei Z, Liang C, Jiang L,Wang L, Cheng S, Peng Q, Feng L, ZhangW, Sun J and Wang Q 2022 Energy Storage Mater. 47 51 [11] Li J, Hua H, Kong X, Yang H, Dai P, Zeng J and Zhao J 2022 Energy Storage Mater. 46 90 [12] Yoon W S, Haas O, Muhammad S, Kim H, Lee W, Kim D, Fischer D A, Jaye C, Yang X Q and Balasubramanian M 2014 Sci. Rep. 4 6827 [13] Li Q, Yan S and Yang W 2020 J. Chem. Phys. 152 140901 [14] Chen S, Jiao S, Liang Q, Li P, Yin J, Li Q, Yu X and Li Q 2024 Anal. Chem. 96 8021 [15] Xie J, Chen J, Guo L, Li Y,Wang Y, Zheng S, Zhang N, Meng J, Zhang K, Li Q, Weng T C, Yu P and Liu X 2025 ACS Nano 19 3931 [16] Li P, Li Y, Liang Q, Niu Y, Zheng S, Zhuo Z, Luo Y, Liang B, Yang D, Yin J, Chen S, Ye W, Pan Y, Li Q, Yu P, Liu X and Li Q 2025 Carbon Energy 7 e699 [17] Li Y, Zheng S, Xie J, Shen L, Li J, Meng J, Zhang N, Li Q, Weng T C, Liu X and Yu P 2024 ACS Energy Lett. 9 4864 [18] Gomez-Martin A, Reissig F, Frankenstein L, Heidbuchel M,Winter M, Placke T and Schmuch R 2022 Adv. Energy Mater. 12 2103045 [19] Wu F, Liu N, Chen L, Su Y, Tan G, Bao L, Zhang Q, Lu Y, Wang J, Chen S and Tan J 2019 Nano Energy 59 50 [20] Wang L, Liu T, Wu T and Lu J 2022 Nature 611 61 [21] Sun Y, Wang C, Huang W, Zhao G, Duan L, Liu Q, Wang S, Fraser A, Guo H and Sun X 2023 Angew. Chem. Int. Ed. 62 e202300962 [22] Li W, Asl H Y, Xie Q and Manthiram A 2019 J. Am. Chem. Soc. 141 5097 [23] Qinghao L, Ruimin Q, Wray L A, Jun C, Zengqing Z, Yanxue C, Shishen Y, Feng P, Zahid H and Wanli Y 2016 J. Phys. D: Appl. Phys. 49 413003 [24] Roychoudhury S, Qiao R, Zhuo Z, Li Q, Lyu Y, Kim J H, Liu J, Lee E, Polzin B J, Guo J, Yan S, Hu Y, Li H, Prendergast D and Yang W 2021 Energy Environ. Mater. 4 246 [25] Zhuo Z, Dai K, Qiao R, Wang R, Wu J, Liu Y, Peng J, Chen L, Chuang Y D, Pan F, Shen Z X, Liu G, Li H, Devereaux T P and Yang W 2021 Joule 5 975 [26] Cho D H, Jo C H, Cho W, Kim Y J, Yashiro H, Sun Y K and Myung S T 2014 J. Electrochem. Soc. 161 A920 [27] Ogley M J W, Menon A S, Pandey G C, Páez Fajardo G J, Johnston B J, McClelland I, Majherova V, Huband S, Tripathy D, Temprano I, Agrestini S, Celorrio V, Pérez G E, Booth S G, Grey C P, Cussen S A and Piper L F J 2024 Joule 9 101775 [28] Lee G H, Lee S, Zhang J, Rinkel B L D, Crafton M J, Zhuo Z, Choi Y, Li J, Yang J, Heo J W, Park B, McCloskey B D, Avdeev M, Yang W and Kang Y M 2024 Energy Environ. Sci. 17 9154 [29] Juelsholt M, Chen J, Pérez-Osorio M A, Rees G J, De Sousa Coutinho S, Maynard-Casely H E, Liu J, Everett M, Agrestini S, Garcia-Fernandez M, Zhou K J, House R A and Bruce P G 2024 Energy Environ. Sci. 17 2530 [30] Lebens-Higgins ZW, Sallis S, Faenza N V, Badway F, Pereira N, Halat D M, Wahila M, Schlueter C, Lee T L, Yang W, Grey C P, Amatucci G G and Piper L F J 2018 Chem. Mater. 30 958 [31] Piao J Y, Liu X C, Wu J, Yang W, Wei Z, Ma J, Duan S Y, Lin X J, Xu Y S, Cao A M and Wan L J 2018 ACS Appl. Mater. Inter. 10 22896 [32] Shah N A, Páez Fajardo G J, Banerjee H, Pandey G C, Menon A S, Ans M, Majherova V, Bree G, Bolloju S, Grinter D C, Ferrer P, Thakur P K, Lee T L, Loveridge M J, Morris A J, Grey C P and Piper L F J 2025 ACS Energy Lett. 10 1313 [33] Long X H, Wu Y R, Zhang N, Yu P F, Feng X F, Zheng S, Fu J M, Liu X S, Liu N,Wang M, Xu L M, Chen JMand Lee J M 2018 Chin. Phys. B 27 107802 [34] Noh H J, Youn S, Yoon C S and Sun Y K 2013 J. Power Sources 233 121 [35] Li W, Reimers J N and Dahn J R 1993 Solid State Ionics 67 123 [36] Hu E, Li Q, Wang X, Meng F, Liu J, Zhang J N, Page K, Xu W, Gu L, Xiao R, Li H, Huang X, Chen L, Yang W, Yu X and Yang X Q 2021 Joule 5 720 [37] Saubanere M, McCalla E, Tarascon J M and Doublet M L 2016 Energy Environ. Sci. 9 984 [38] Sathiya M, Rousse G, Ramesha K, Laisa C P, Vezin H, Sougrati M T, Doublet M L, Foix D, Gonbeau D, Walker W, Prakash A S, Ben Hassine M, Dupont L and Tarascon J M 2013 Nat. Mater. 12 827 [39] Li Q, Liang Q, Zhang H, Jiao S, Zhuo Z, Wang J, Li Q, Zhang J N and Yu X 2023 Angew. Chem. Int. Ed. 62 e202215131 [40] Li Q, Wang Y, Wang X, Sun X, Zhang J N, Yu X and Li H 2020 ACS Appl. Mater. Inter. 12 2319 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|