| INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Coupled dynamics of information diffusion and disease transmission considering vaccination and time-varying forgetting probability |
| Lai-Jun Zhao(赵来军)1,2, Lu-Ping Chen(陈陆平)1, Ping-Le Yang(杨平乐)1,2,†, Fan-Yuan Meng(孟凡圆)3, and Chen Dong(董晨)4 |
1 Business School, University of Shanghai for Science and Technology, Shanghai 200093, China; 2 School of Intelligent Emergency Management, University of Shanghai for Science and Technology, Shanghai 200093, China; 3 Alibaba Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou 311121, China; 4 School of Economics and Management, Jiangsu University of Science and Technology, Zhenjiang 212100, China |
|
|
|
|
Abstract Vaccination is critical for controlling infectious diseases, but negative vaccination information can lead to vaccine hesitancy. To study how the interplay between information diffusion and disease transmission impacts vaccination and epidemic spread, we propose a novel two-layer multiplex network model that integrates an unaware-acceptant-negative-unaware (UANU) information diffusion model with a susceptible-vaccinated-exposed-infected-susceptible (SVEIS) epidemiological framework. This model includes individual exposure and vaccination statuses, time-varying forgetting probabilities, and information conversion thresholds. Through the microscopic Markov chain approach (MMCA), we derive dynamic transition equations and the epidemic threshold expression, validated by Monte Carlo simulations. Using MMCA equations, we predict vaccination densities and analyze parameter effects on vaccination, disease transmission, and the epidemic threshold. Our findings suggest that promoting positive information, curbing the spread of negative information, enhancing vaccine effectiveness, and promptly identifying asymptomatic carriers can significantly increase vaccination rates, reduce epidemic spread, and raise the epidemic threshold.
|
Received: 14 March 2025
Revised: 15 May 2025
Accepted manuscript online: 04 June 2025
|
|
PACS:
|
87.23.Kg
|
(Dynamics of evolution)
|
| |
87.23.Ge
|
(Dynamics of social systems)
|
| |
64.60.aq
|
(Networks)
|
|
| Fund: Project supported by the National Social Science Foundation of China (Grant Nos. 21BGL217 and 22CGL050) and the Philosophy and Social Science Fund of Education Department of Jiangsu Province (Grant No. 2020SJA2346). |
Corresponding Authors:
Ping-Le Yang
E-mail: plyang@usst.edu.cn
|
Cite this article:
Lai-Jun Zhao(赵来军), Lu-Ping Chen(陈陆平), Ping-Le Yang(杨平乐), Fan-Yuan Meng(孟凡圆), and Chen Dong(董晨) Coupled dynamics of information diffusion and disease transmission considering vaccination and time-varying forgetting probability 2025 Chin. Phys. B 34 118701
|
[1] Sands P, Turabi A E, Saynisch P A and Dzau V J 2016 Lancet 388 2443
[2] Fonkwo P N 2008 EMBO Rep. 9 S13
[3] Antrs P, Redding S J and Rossi-Hansberg E 2023 Am. Econ. Rev. 113 939
[4] Li X J, Li C and Li X 2022 Sci. China Inf. Sci. 65 172202
[5] Yang P, Fan R, Wang Y and Zhang Y 2024 Chin. Phys. B 33 070206
[6] Wang W, Nie Y Y, Li W Y, Lin T, Shang M S, Su S, Tang Y, Zhang Y C and Sun G Q 2024 Phys. Rep. 1056 1
[7] Du E H, Chen E, Liu J and Zheng C M 2021 Sci. Total Environ. 761 144114
[8] Liu C X, Yang Y, Chen B S, Cui T Y, Shang F, Fan J F and Li R Q 2022 Chaos 32 081105
[9] Shi D Y, Shang F, Chen B S, Expert P, Lu L Y, Stanley H E, Lambiotte R, Evans T S and Li R Q 2024 Commun. Phys. 7 170
[10] Li R Q, Richmond P and Roehner B M 2018 Physica A 510 713
[11] Velasquez-Rojas F, Ventura P C, Connaughton C, Moreno Y, Rodrigues F A and Vazquez F 2020 Phys. Rev. E 102 022312
[12] Xie X X, Huo L A, Dong Y F and Cheng Y Y 2024 Chin. Phys. B 33 038704
[13] Wang S and Tan X J 2022 Appl. Soft Comput. 121 108750
[14] Feng M L, Liu L J, Chen J X and Xia C Y 2024 Chaos, Solitons and Fractals 183 114858
[15] Hu X, Chen J X and Xia C Y 2024 Chin. Phys. B 33 100202
[16] Granell C, Gomez S and Arenas A 2014 Phys. Rev. E 90 012808
[17] Zhan X X, Liu C, Zhou G, Zhang Z K, Sun G Q, Zhu J J H and Jin Z 2018 Appl. Math. Comput. 332 437
[18] Kabir K M A and Tanimoto J 2019 Commun. Nonlinear Sci. Numer. Simul. 72 565
[19] Wang Z S, Xia C Y, Chen Z Q and Chen G R 2020 IEEE Trans. Cybern. 51 1454
[20] Wang Z S and Xia C Y 2020 Nonlinear Dyn. 102 3039
[21] Li D D, Xie W J, Han D and Sun M 2023 Inf. Sci. 651 119723
[22] Sun Q Y, Wang Z S, Zhao D W, Xia C Y and Perc M 2022 Chaos, Solitons and Fractals 164 112734
[23] Li W Y, Xue X Y, Pan L M, Lin T and Wang W 2022 Appl. Math. Comput. 412 126595
[24] Liu L J, Feng M J, Xia C Y, Zhao D W and Perc M 2023 Chaos, Solitons and Fractals 173 113657
[25] Tian Y and Ding X J 2019 Appl. Math. Comput. 363 124599
[26] Huang S, Chen J, Li M Y, Xu Y H and Hu M B 2024 Chin. Phys. B 33 030205
[27] Huo L A and Wu B J 2024 Chin. Phys. B 33 038702
[28] Chai Y, Wang Y G, Yan J and Sun X L 2023 Chin. Phys. B 32 090202
[29] Yan Z, Zhou X and Du R 2024 Electron. Commer. Res. 24 2021
[30] Murre J M and Dros J 2015 PloS one 10 e0120644
[31] Wixted J T 2022 Proc. Natl. Acad. Sci. USA 119 e2201332119
[32] Wang S F, Gong M G, Liu W F and Wu Y 2020 Appl. Soft Comput. 89 106118
[33] Zhu Y Y, Shen R Z, Dong H and Wang W 2024 Chin. Phys. B 33 058301
[34] Tan Y P, Cai Y L, Wang X Q, Peng Z H, Wang K, Yao R X and Wang W M 2023 Math. Comput. Simul. 204 1
[35] Sun L H, He Q, Teng Y Y, Zhao Q, Yan X and Wang X W 2023 Appl. Math. Comput. 136 110081
[36] Tomovski I, Basnarkov L and Abazi A 2021 Physica A 9 552
[37] Radulescu A, Williams C and Cavanagh K 2020 Sci. Rep. 10 21256
[38] Tomovski I, Basnarkov L and Abazi A 2022 Physica A 599 127480
[39] Ma W C, Zhang P, Zhao X and Xue L Y 2022 Physica A 588 126558
[40] Tang L K, Shen R and Pan X Y 2024 J. Franklin Inst. 361 106784
[41] Yang P L, Meng F Y, Zhao L J and Zhou L X 2023 Chaos, Solitons and Fractals 166 112974
[42] Yang P L, Zhao L J, Lu Z, Zhou L X, Meng F Y and Qian Y 2023 Chaos, Solitons and Fractals 173 113720
[43] Zhuang C L, Lin Z J, Bi Z F, Qiu L X, Hu F F, Liu X H, Lin B Z, Su Y Y, Pan H R, Zhang T Y, Huang S J, Hu Y M, Qiao Y L, Zhu F C, Wu T, Zhang J and Xia N S 2021 Emerg. Microbes Infect. 10 365
[44] Rutkowski K, Mirakian R, Till S, Rutkowski R and Wagner A 2021 Clin. Exp. Allergy 51 770
[45] Lieberman A and Schroeder J 2020 Curr. Opin. Psychol. 31 16
[46] Dunbar R I M, Arnaboldi V, Conti M and Passarella A 2015 Soc. Networks 43 39
[47] Zhao L J, Xie W L, Gao H O, Qiu X Y, Wang X L and Zhang S H 2013 Physica A 392 6146
[48] Gu J, Li W and Cai X 2008 Eur. Phys. J. B 62 247
[49] Li L, Dong G G, Zhu H P and Tian L X 2024 Phys. Rev. Lett. 472 128617
[50] Alves H, Koch A and Unkelbach C 2017 Trends Cogn. Sci. 21 69
[51] Ito T A, Larsen J T, Smith N K and Cacioppo J T 1998 J. Pers. Soc. Psychol. 75 887
[52] Gomez S, Arenas A, Borge-Holthoefer J, Meloni S and Moreno Y 2010 Europhys. Lett. 89 38009 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|