Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 118701    DOI: 10.1088/1674-1056/ade067
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Coupled dynamics of information diffusion and disease transmission considering vaccination and time-varying forgetting probability

Lai-Jun Zhao(赵来军)1,2, Lu-Ping Chen(陈陆平)1, Ping-Le Yang(杨平乐)1,2,†, Fan-Yuan Meng(孟凡圆)3, and Chen Dong(董晨)4
1 Business School, University of Shanghai for Science and Technology, Shanghai 200093, China;
2 School of Intelligent Emergency Management, University of Shanghai for Science and Technology, Shanghai 200093, China;
3 Alibaba Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou 311121, China;
4 School of Economics and Management, Jiangsu University of Science and Technology, Zhenjiang 212100, China
Abstract  Vaccination is critical for controlling infectious diseases, but negative vaccination information can lead to vaccine hesitancy. To study how the interplay between information diffusion and disease transmission impacts vaccination and epidemic spread, we propose a novel two-layer multiplex network model that integrates an unaware-acceptant-negative-unaware (UANU) information diffusion model with a susceptible-vaccinated-exposed-infected-susceptible (SVEIS) epidemiological framework. This model includes individual exposure and vaccination statuses, time-varying forgetting probabilities, and information conversion thresholds. Through the microscopic Markov chain approach (MMCA), we derive dynamic transition equations and the epidemic threshold expression, validated by Monte Carlo simulations. Using MMCA equations, we predict vaccination densities and analyze parameter effects on vaccination, disease transmission, and the epidemic threshold. Our findings suggest that promoting positive information, curbing the spread of negative information, enhancing vaccine effectiveness, and promptly identifying asymptomatic carriers can significantly increase vaccination rates, reduce epidemic spread, and raise the epidemic threshold.
Keywords:  information diffusion      epidemic spreading      vaccine immunization      time-varying forgetting probability  
Received:  14 March 2025      Revised:  15 May 2025      Accepted manuscript online:  04 June 2025
PACS:  87.23.Kg (Dynamics of evolution)  
  87.23.Ge (Dynamics of social systems)  
  64.60.aq (Networks)  
Fund: Project supported by the National Social Science Foundation of China (Grant Nos. 21BGL217 and 22CGL050) and the Philosophy and Social Science Fund of Education Department of Jiangsu Province (Grant No. 2020SJA2346).
Corresponding Authors:  Ping-Le Yang     E-mail:  plyang@usst.edu.cn

Cite this article: 

Lai-Jun Zhao(赵来军), Lu-Ping Chen(陈陆平), Ping-Le Yang(杨平乐), Fan-Yuan Meng(孟凡圆), and Chen Dong(董晨) Coupled dynamics of information diffusion and disease transmission considering vaccination and time-varying forgetting probability 2025 Chin. Phys. B 34 118701

[1] Sands P, Turabi A E, Saynisch P A and Dzau V J 2016 Lancet 388 2443
[2] Fonkwo P N 2008 EMBO Rep. 9 S13
[3] Antrs P, Redding S J and Rossi-Hansberg E 2023 Am. Econ. Rev. 113 939
[4] Li X J, Li C and Li X 2022 Sci. China Inf. Sci. 65 172202
[5] Yang P, Fan R, Wang Y and Zhang Y 2024 Chin. Phys. B 33 070206
[6] Wang W, Nie Y Y, Li W Y, Lin T, Shang M S, Su S, Tang Y, Zhang Y C and Sun G Q 2024 Phys. Rep. 1056 1
[7] Du E H, Chen E, Liu J and Zheng C M 2021 Sci. Total Environ. 761 144114
[8] Liu C X, Yang Y, Chen B S, Cui T Y, Shang F, Fan J F and Li R Q 2022 Chaos 32 081105
[9] Shi D Y, Shang F, Chen B S, Expert P, Lu L Y, Stanley H E, Lambiotte R, Evans T S and Li R Q 2024 Commun. Phys. 7 170
[10] Li R Q, Richmond P and Roehner B M 2018 Physica A 510 713
[11] Velasquez-Rojas F, Ventura P C, Connaughton C, Moreno Y, Rodrigues F A and Vazquez F 2020 Phys. Rev. E 102 022312
[12] Xie X X, Huo L A, Dong Y F and Cheng Y Y 2024 Chin. Phys. B 33 038704
[13] Wang S and Tan X J 2022 Appl. Soft Comput. 121 108750
[14] Feng M L, Liu L J, Chen J X and Xia C Y 2024 Chaos, Solitons and Fractals 183 114858
[15] Hu X, Chen J X and Xia C Y 2024 Chin. Phys. B 33 100202
[16] Granell C, Gomez S and Arenas A 2014 Phys. Rev. E 90 012808
[17] Zhan X X, Liu C, Zhou G, Zhang Z K, Sun G Q, Zhu J J H and Jin Z 2018 Appl. Math. Comput. 332 437
[18] Kabir K M A and Tanimoto J 2019 Commun. Nonlinear Sci. Numer. Simul. 72 565
[19] Wang Z S, Xia C Y, Chen Z Q and Chen G R 2020 IEEE Trans. Cybern. 51 1454
[20] Wang Z S and Xia C Y 2020 Nonlinear Dyn. 102 3039
[21] Li D D, Xie W J, Han D and Sun M 2023 Inf. Sci. 651 119723
[22] Sun Q Y, Wang Z S, Zhao D W, Xia C Y and Perc M 2022 Chaos, Solitons and Fractals 164 112734
[23] Li W Y, Xue X Y, Pan L M, Lin T and Wang W 2022 Appl. Math. Comput. 412 126595
[24] Liu L J, Feng M J, Xia C Y, Zhao D W and Perc M 2023 Chaos, Solitons and Fractals 173 113657
[25] Tian Y and Ding X J 2019 Appl. Math. Comput. 363 124599
[26] Huang S, Chen J, Li M Y, Xu Y H and Hu M B 2024 Chin. Phys. B 33 030205
[27] Huo L A and Wu B J 2024 Chin. Phys. B 33 038702
[28] Chai Y, Wang Y G, Yan J and Sun X L 2023 Chin. Phys. B 32 090202
[29] Yan Z, Zhou X and Du R 2024 Electron. Commer. Res. 24 2021
[30] Murre J M and Dros J 2015 PloS one 10 e0120644
[31] Wixted J T 2022 Proc. Natl. Acad. Sci. USA 119 e2201332119
[32] Wang S F, Gong M G, Liu W F and Wu Y 2020 Appl. Soft Comput. 89 106118
[33] Zhu Y Y, Shen R Z, Dong H and Wang W 2024 Chin. Phys. B 33 058301
[34] Tan Y P, Cai Y L, Wang X Q, Peng Z H, Wang K, Yao R X and Wang W M 2023 Math. Comput. Simul. 204 1
[35] Sun L H, He Q, Teng Y Y, Zhao Q, Yan X and Wang X W 2023 Appl. Math. Comput. 136 110081
[36] Tomovski I, Basnarkov L and Abazi A 2021 Physica A 9 552
[37] Radulescu A, Williams C and Cavanagh K 2020 Sci. Rep. 10 21256
[38] Tomovski I, Basnarkov L and Abazi A 2022 Physica A 599 127480
[39] Ma W C, Zhang P, Zhao X and Xue L Y 2022 Physica A 588 126558
[40] Tang L K, Shen R and Pan X Y 2024 J. Franklin Inst. 361 106784
[41] Yang P L, Meng F Y, Zhao L J and Zhou L X 2023 Chaos, Solitons and Fractals 166 112974
[42] Yang P L, Zhao L J, Lu Z, Zhou L X, Meng F Y and Qian Y 2023 Chaos, Solitons and Fractals 173 113720
[43] Zhuang C L, Lin Z J, Bi Z F, Qiu L X, Hu F F, Liu X H, Lin B Z, Su Y Y, Pan H R, Zhang T Y, Huang S J, Hu Y M, Qiao Y L, Zhu F C, Wu T, Zhang J and Xia N S 2021 Emerg. Microbes Infect. 10 365
[44] Rutkowski K, Mirakian R, Till S, Rutkowski R and Wagner A 2021 Clin. Exp. Allergy 51 770
[45] Lieberman A and Schroeder J 2020 Curr. Opin. Psychol. 31 16
[46] Dunbar R I M, Arnaboldi V, Conti M and Passarella A 2015 Soc. Networks 43 39
[47] Zhao L J, Xie W L, Gao H O, Qiu X Y, Wang X L and Zhang S H 2013 Physica A 392 6146
[48] Gu J, Li W and Cai X 2008 Eur. Phys. J. B 62 247
[49] Li L, Dong G G, Zhu H P and Tian L X 2024 Phys. Rev. Lett. 472 128617
[50] Alves H, Koch A and Unkelbach C 2017 Trends Cogn. Sci. 21 69
[51] Ito T A, Larsen J T, Smith N K and Cacioppo J T 1998 J. Pers. Soc. Psychol. 75 887
[52] Gomez S, Arenas A, Borge-Holthoefer J, Meloni S and Moreno Y 2010 Europhys. Lett. 89 38009
[1] Global dynamics and optimal control of SEIQR epidemic model on heterogeneous complex networks
Xiongding Liu(柳雄顶), Xiaodan Zhao(赵晓丹), Xiaojing Zhong(钟晓静), and Wu Wei(魏武). Chin. Phys. B, 2025, 34(6): 060203.
[2] Influence of negative information dissemination and vaccination behavioral decision-making on epidemic spreading in a three-layer network
Liang’an Huo(霍良安) and Leyao Yin(尹乐瑶). Chin. Phys. B, 2025, 34(6): 068902.
[3] Vital nodes identification method integrating degree centrality and cycle ratio
Yu Zhao(赵玉) and Bo Yang(杨波). Chin. Phys. B, 2025, 34(3): 038901.
[4] An epidemic model considering multiple factors based on multilayer hypernetworks
Yue-Yue Zheng(郑月月), Zhi-Ping Wang(王志平), Ya-Nan Sun(孙雅楠), Shi-Jie Xie(谢仕杰), and Lin Wang(王琳). Chin. Phys. B, 2025, 34(10): 100201.
[5] Individual dynamics and local heterogeneity provide a microscopic view of the epidemic spreading
Youyuan Zhu(朱友源), Ruizhe Shen(沈瑞哲), Hao Dong(董昊), and Wei Wang(王炜). Chin. Phys. B, 2024, 33(5): 058301.
[6] Studying the co-evolution of information diffusion, vaccination behavior and disease transmission in multilayer networks with local and global effects
Liang'an Huo(霍良安) and Bingjie Wu(武兵杰). Chin. Phys. B, 2024, 33(3): 038702.
[7] Dynamics of information diffusion and disease transmission in time-varying multiplex networks with asymmetric activity levels
Xiao-Xiao Xie(谢笑笑), Liang-An Huo(霍良安), Ya-Fang Dong(董雅芳), and Ying-Ying Cheng(程英英). Chin. Phys. B, 2024, 33(3): 038704.
[8] Impact of environmental factors on the coevolution of information-emotions-epidemic dynamics in activity-driven multiplex networks
Liang'an Huo(霍良安), Bingjie Liu(刘炳杰), and Xiaomin Zhao(赵晓敏). Chin. Phys. B, 2024, 33(12): 128903.
[9] Intervention against information diffusion in static and temporal coupling networks
Yun Chai(柴允), You-Guo Wang(王友国), Jun Yan(颜俊), and Xian-Li Sun(孙先莉). Chin. Phys. B, 2023, 32(9): 090202.
[10] Contagion dynamics on adaptive multiplex networks with awareness-dependent rewiring
Xiao-Long Peng(彭小龙) and Yi-Dan Zhang(张译丹). Chin. Phys. B, 2021, 30(5): 058901.
[11] Asynchronism of the spreading dynamics underlying the bursty pattern
Tong Wang(王童), Ming-Yang Zhou(周明洋), Zhong-Qian Fu(付忠谦). Chin. Phys. B, 2020, 29(5): 058901.
[12] Reverse-feeding effect of epidemic by propagators in two-layered networks
Dayu Wu(吴大宇), Yanping Zhao(赵艳萍), Muhua Zheng(郑木华), Jie Zhou(周杰), Zonghua Liu(刘宗华). Chin. Phys. B, 2016, 25(2): 028701.
[13] Epidemic spreading on random surfer networks with infected avoidance strategy
Yun Feng(冯运), Li Ding(丁李), Yun-Han Huang(黄蕴涵), Zhi-Hong Guan(关治洪). Chin. Phys. B, 2016, 25(12): 128903.
[14] Subtle role of latency for information diffusion in online social networks
Fei Xiong(熊菲), Xi-Meng Wang(王夕萌), Jun-Jun Cheng(程军军). Chin. Phys. B, 2016, 25(10): 108904.
[15] Global stability of a susceptible-infected-susceptible epidemic model on networks with individual awareness
Li Ke-Zan (李科赞), Xu Zhong-Pu (徐忠朴), Zhu Guang-Hu (祝光湖), Ding Yong (丁勇). Chin. Phys. B, 2014, 23(11): 118904.
No Suggested Reading articles found!