Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 108904    DOI: 10.1088/1674-1056/25/10/108904
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Subtle role of latency for information diffusion in online social networks

Fei Xiong(熊菲)1,2, Xi-Meng Wang(王夕萌)1,2, Jun-Jun Cheng(程军军)3
1 School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China;
2 Key Laboratory of Communication and Information Systems, Beijing Municipal Commission of Education, Beijing Jiaotong University, Beijing 100044, China;
3 China Information Technology Security Evaluation Center, Beijing 100085, China
Abstract  Information diffusion in online social networks is induced by the event of forwarding information for users, and latency exists widely in user spreading behaviors. Little work has been done to reveal the effect of latency on the diffusion process. In this paper, we propose a propagation model in which nodes may suspend their spreading actions for a waiting period of stochastic length. These latent nodes may recover their activity again. Meanwhile, the mechanism of forwarding information is also introduced into the diffusion model. Mean-field analysis and numerical simulations indicate that our model has three nontrivial results. First, the spreading threshold does not correlate with latency in neither homogeneous nor heterogeneous networks, but depends on the spreading and refractory parameter. Furthermore, latency affects the diffusion process and changes the infection scale. A large or small latency parameter leads to a larger final diffusion extent, but the intrinsic dynamics is different. Large latency implies forwarding information rapidly, while small latency prevents nodes from dropping out of interactions. In addition, the betweenness is a better descriptor to identify influential nodes in the model with latency, compared with the coreness and degree. These results are helpful in understanding some collective phenomena of the diffusion process and taking measures to restrain a rumor in social networks.
Keywords:  information diffusion      node latency      user behavior      complex networks  
Received:  14 April 2016      Revised:  19 May 2016      Accepted manuscript online: 
PACS:  89.75.-k (Complex systems)  
  87.23.Ge (Dynamics of social systems)  
  89.75.Fb (Structures and organization in complex systems)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61401015 and 61271308), the Fundamental Research Funds for the Central Universities, China (Grant No. 2014JBM018), and the Talent Fund of Beijing Jiaotong University, China (Grant No. 2015RC013).
Corresponding Authors:  Fei Xiong     E-mail:  xiongf@bjtu.edu.cn

Cite this article: 

Fei Xiong(熊菲), Xi-Meng Wang(王夕萌), Jun-Jun Cheng(程军军) Subtle role of latency for information diffusion in online social networks 2016 Chin. Phys. B 25 108904

[1] Barthélemy M, Barrat A, Pastor-Satorras R and Vespignani A 2004 Phys. Rev. Lett. 92 178701
[2] Nekoveea M, Morenob Y, Bianconic G and Marsili M 2007 Physica A 374 457
[3] Lu Y, Jiang G and Song Y 2012 Chin. Phys. B 21 100207
[4] Genois M, Vestergaard C L, Cattuto C and Barrat A 2015 Nat. Commun. 6 8860
[5] Gong Y, Song Y and Jiang G 2012 Chin. Phys. B 21 010205
[6] Reppas A I, De Decker Y and Siettos C I 2012 J. Stat. Mech. 2012 P08020
[7] Zhou T, Liu J, Bai W, Chen G and Wang B 2006 Phys. Rev. E 74 056109
[8] Barthelemy M, Barrat A, Pastor-Satorras R and Vespignani A 2002 Phys. Rev. Lett. 92 178701
[9] Parshani R, Carmi S and Havlin S 2010 Phys. Rev. Lett. 104 258701
[10] Newman M E J 2002 Phys. Rev. E 66 016128
[11] Silva R D and Fernandes H A 2015 J. Stat. Mech. 2015 P06011
[12] Wang Y, Cao J D, Alofi A, AL-Mazrooei A and Elaiw A 2015 Physica A 437 75
[13] Castellano C, Fortunato S and Loreto V 2009 Rev. Mod. Phys. 81 591
[14] Fotouhi B and Shirkoohi M K 2016 Phys. Rev. E 93 012301
[15] Liu C, Xie J, Chen H, Zhang H and Tang M 2015 Chaos 25 103111
[16] Li W, Tang S, Fang W, Guo Q, Zhang X and Zheng Z 2015 Phys. Rev. E 92 042810
[17] Yagan O, Qian D, Zhang J and Cochran D 2013 IEEE J. Sel. Area Comm. 31 1038
[18] Nematzadeh A, Ferrara E, Flammini A and Ahn Y Y 2014 Phys. Rev. Lett. 113 088701
[19] Song B, Jiang G, Song Y and Xia L 2015 Chin. Phys. B 24 100101
[20] Hu Q, Zhang Y, Xu X, Xing C, Chen C and Chen X 2015 Acta Phys. Sin. 64 190101 (in Chinese)
[21] Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E and Makse H A 2010 Nat. Phys. 6 888
[22] Borge-Holthoefer J and Moreno Y 2012 Phys. Rev E 85 026116
[23] Lu Z, Wen Y, Zhang W, Zheng Q and Cao G 2015 IEEE T. Mobile Comput. 15 1292
[24] Lu Z, Wen Y and Cao G 2014 Proceedings of 33rd Annual IEEE International Conference on Computer Communications, 2014, Toronto, Canada, p. 1932
[25] Li Y, Qian M, Jin D, Hui P and Vasilakos A V 2015 Inform. Sci. 293 383
[26] Centola D 2010 Science 329 1194
[27] Zhao J, Wu J and Xu K 2010 Phys. Rev. E 82 016105
[28] Hu H, Wen Y, Chua T and Li X 2014 IEEE Access Journal 2 652
[29] Wen S, Haghighi M S, Chen C, Xiang Y, Zhou W and Jia W 2015 IEEE T. Comput. 64 640
[30] Wen S, Jiang J J, Xiang Y, Yu S, Zhou W L and Jia W J 2014 IEEE T. Parall. Distr. 25 3306
[31] Jiang C, Chen Y and Liu K J 2014 IEEE T. Signal Proces. 62 4573
[32] Lambiotte R, Saramaki J and Blondel V D 2009 Phys. Rev. E 79 046107
[33] Goldenberg J, Libai B and Muller E 2001 Market. Lett. 12 211
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[4] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[5] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[6] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[7] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[8] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[9] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[10] Asynchronism of the spreading dynamics underlying the bursty pattern
Tong Wang(王童), Ming-Yang Zhou(周明洋), Zhong-Qian Fu(付忠谦). Chin. Phys. B, 2020, 29(5): 058901.
[11] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[12] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇)†, Christian B\"ohm, and Xueen Chen(陈学恩). Chin. Phys. B, 2020, 29(10): 108901.
[13] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[14] Theoretical analyses of stock correlations affected by subprime crisis and total assets: Network properties and corresponding physical mechanisms
Shi-Zhao Zhu(朱世钊), Yu-Qing Wang(王玉青), Bing-Hong Wang(汪秉宏). Chin. Phys. B, 2019, 28(10): 108901.
[15] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
No Suggested Reading articles found!