Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 118904    DOI: 10.1088/1674-1056/23/11/118904
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Global stability of a susceptible-infected-susceptible epidemic model on networks with individual awareness

Li Ke-Zan (李科赞)a, Xu Zhong-Pu (徐忠朴)a, Zhu Guang-Hu (祝光湖)a, Ding Yong (丁勇)a b
a School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004, China;
b The State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an 710071, China
Abstract  

Recent research results indicate that individual awareness can play an important influence on epidemic spreading in networks. By local stability analysis, a significant conclusion is that the embedded awareness in an epidemic network can increase its epidemic threshold. In this paper, by using limit theory and dynamical system theory, we further give global stability analysis of a susceptible-infected-susceptible (SIS) epidemic model on networks with awareness. Results show that the obtained epidemic threshold is also a global stability condition for its endemic equilibrium, which implies the embedded awareness can enhance the epidemic threshold globally. Some numerical examples are presented to verify the theoretical results.

Keywords:  epidemic spreading      global stability      awareness  
Received:  19 March 2014      Revised:  12 May 2014      Accepted manuscript online: 
PACS:  89.75.Hc (Networks and genealogical trees)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  89.75.-k (Complex systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61004101, 11161013, and 61164020), the Natural Science Foundation of Guangxi Province, China (Grant Nos. 2011GXNSFB018059 and 2013GXNSFAA019006), the 2012 Open Grant of Guangxi Key Lab of Wireless Wideband Communication and Signal Processing, China, the 2012 Open Grant of the State Key Laboratory of Integrated Services Networks of Xidian University, China, and the Graduate Education Innovation Project of Guilin University of Electronic Technology, China (Grant No. GDYCSZ201472).

Corresponding Authors:  Ding Yong     E-mail:  tone_dingy@126.com

Cite this article: 

Li Ke-Zan (李科赞), Xu Zhong-Pu (徐忠朴), Zhu Guang-Hu (祝光湖), Ding Yong (丁勇) Global stability of a susceptible-infected-susceptible epidemic model on networks with individual awareness 2014 Chin. Phys. B 23 118904

[1] Faloutsos M, Faloutsos P and Faloutsos C 1999 Acm Sig. Comput. Commun. Rev. 29 251
[2] Barabasi A L and Oltval Z N 2004 Nat. Rev. Genet. 5 101
[3] Vidal M, Cusick M E and Barabasi A L 2011 Cell 144 986
[4] Wang J W and Rong L L 2009 Safety Sci. 47 1331
[5] Milgram S 1967 Psychology Today 5 61
[6] Fu X C, Small M, Walker D M and Zhang H F 2008 Phys. Rev. E 77 036113
[7] Song Y R, Jiang G P and Gong Y W 2013 Chin. Phys. B 22 040205
[8] Chi L P, Wang R, Su H, Xu X P, Zhao J S, Li W and Cai X 2003 Chin. Phys. Lett. 20 1393
[9] Wang D, Yu H, Jing Y W, Jiang N and Zhang S Y 2009 Acta Phys. Sin. 58 6802 (in Chinese)
[10] Barthelemy M, Barrat A, Pastor-Satorras R and Vespignani A 2005 Theor. Bio. 235 275
[11] Barrat A, Barthelemy M, Pastor-Satorras R and Vespignani A 2004 Proc. Nat. Acad. Sci. 101 3747
[12] Pastor-Satorras R and Vespignani A 2001 Phys. Rev. Lett. 86 3200
[13] Pastor-Satorras R and Vespignani A 2002 Phys. Rev. E 65 035108
[14] Li K Z, Small M, Zhang H F and Fu X C 2010 Nonlinear Anal. RWA 11 1017
[15] Wang L and Dai G Z 2008 SIAM J. Appl. Math. 68 1495
[16] Li Y, Liu Y, Shan X M, Ren Y, Jiao J and Qiu B 2005 Chin. Phys. 14 2153
[17] Lajmanovich A and Yorke J A 1976 Math. Biosci. 28 221
[18] d'Onofrio A 2008 Nonlinear Anal. RWA 9 1567
[19] Zhu G H, Fu X C and Chen G R 2012 Appl. Math. Model. 36 5808
[20] Guo H B, Li M Y and Shuai Z S 2006 Can. Appl. Math. Q 14 259
[21] Li M Y and Shuai Z 2010 J. Differential Equations 248 1
[22] Sun R Y 2010 Comput. Math. Appl. 60 2286
[23] Funk S, Gilad E and Jansen V A A 2010 J. Theor. Biol. 264 501
[24] Lu Y L, Jing G P and Song Y R 2012 Chin. Phys. B 21 100207
[25] Li K Z, Ma Z J, Jia Z, Small M and Fu X C 2012 Chaos 22 96
[26] Bagnoli F, Liò P and Sguanci L 2007 Phys. Rev. E 76 061904
[27] Marceau V, Noël P A, Hébert-Dufresne L, Allard A and Dubé L J 2011 Phys. Rev. E 84 026105
[28] Granell C, Gómez S and Arenas A 2013 Phys. Rev. Lett. 111 128701
[29] Wu Q C, Fu X C, Small M and Xu X J 2012 Chaos 22 1054
[30] Xu Z P and Li K Z 2014 J. Guilin Uni. Elec. Tech. (Accepted)
[1] Contagion dynamics on adaptive multiplex networks with awareness-dependent rewiring
Xiao-Long Peng(彭小龙) and Yi-Dan Zhang(张译丹). Chin. Phys. B, 2021, 30(5): 058901.
[2] Reverse-feeding effect of epidemic by propagators in two-layered networks
Dayu Wu(吴大宇), Yanping Zhao(赵艳萍), Muhua Zheng(郑木华), Jie Zhou(周杰), Zonghua Liu(刘宗华). Chin. Phys. B, 2016, 25(2): 028701.
[3] Epidemic spreading on random surfer networks with infected avoidance strategy
Yun Feng(冯运), Li Ding(丁李), Yun-Han Huang(黄蕴涵), Zhi-Hong Guan(关治洪). Chin. Phys. B, 2016, 25(12): 128903.
[4] Epidemic spreading on a scale-free network with awareness
Lu Yan-Ling (鲁延玲), Jiang Guo-Ping (蒋国平), Song Yu-Rong (宋玉蓉). Chin. Phys. B, 2012, 21(10): 100207.
[5] Effect of incubation period on epidemic spreading in complex networks
Huang Wei(黄炜), Jiang Rui(姜锐), Hu Mao-Bin(胡茂彬), and Wu Qing-Song(吴清松). Chin. Phys. B, 2009, 18(4): 1306-1311.
[6] A cellular automata model of epidemics of a heterogeneous susceptibility
Jin Zhen (靳祯), Liu Quan-Xing (刘权兴). Chin. Phys. B, 2006, 15(6): 1248-1256.
[7] Dynamic properties of epidemic spreading on finite size complex networks
Li Ying (李旲), Liu Yang (刘旸), Shan Xiu-Ming (山秀明), Ren Yong (任勇), Jiao Jian (焦健), Qiu Ben (仇贲). Chin. Phys. B, 2005, 14(11): 2153-2157.
No Suggested Reading articles found!